

Excel
®

 2007
Macros

Made EASY

This page intentionally left blank

Excel
®

 2007
Macros

Made EASY

Gail Perry

New York Chicago San Francisco Lisbon

London Madrid Mexico City Milan New Delhi

San Juan Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher.

ISBN: 978-0-07-159959-7

MHID: 0-07-159959-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159958-0, MHID: 0-07-159958-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names
in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear
in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To
contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by
our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for
any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work
is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom-
pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the
work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work
is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURA-
CY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

About the Author

Gail Perry is a CPA, financial journalist, and the author of more than 20 books
on financial software, taxes, and personal finance. She is the managing editor
for AccountingWEB, a contributing editor for SMB Finance magazine, and an
instructor.

This page intentionally left blank

  vii

Contents at a Glance

Chapter 1  	 Recording Macros	 1

Chapter 2  	 Editing Macros	 19

Chapter 3  	 Creating Macros in Visual Basic	 35

Chapter 4  	 Storing Macros	 53

Chapter 5  	 Understanding Macro Commands	 73

Chapter 6  	 Using Visual Basic Subroutines
	  and Creating Functions	 91

Chapter 7  	 Creating Interactive Macros	 103

Chapter 8  	 Using Macros to Format Cells	 119

Chapter 9  	 Using Variables in Macros	 133

Chapter 10  	 Creating If/Then/Else Routines	 147

Chapter 11  	 Exploring Loops	 157

Chapter 12  	 Adding Controls to Your Worksheets	 171

Index		 183

This page intentionally left blank

  ix

Introduction

Welcome to Excel 2007 Macros Made Easy! This book was written for everyday
Excel users, like yourself, who want to free themselves from the drudgery
of repeating the same tasks over and over again. In this book, you’ll learn
powerful shortcuts and time-saving methods for expediting and remembering
tasks. Unlike other books in this series, it is focused on teaching you just
the things you need to know to get up and running with spreadsheet macros
quickly and easily. You won’t need to have a degree in programming or to set
aside hours and hours for study to be able to get through the lessons in this
little book and put them to work for you right away. In fact, you should be able
to create your first macro in about a minute.

Inside this book, you’ll discover how to teach Excel to do repetitive tasks
that take up valuable time and energy that you could spend on more productive
endeavors. You’ll also learn how to protect the integrity of your data by creating
macros that prevent incorrect information from being entered into your
spreadsheets. Using Excel macros, you can even interact with other users,
asking them to input specific data. So, get ready to jump in! It’s time to let Excel
macros free you from drudgery and make your work life smoother and easier.

Elements Used in This Book
Reading page after page of unbroken text, especially in a how-to book, can be
deadly dull. I tried to guard against that by providing lots of illustrations along
the way to help you see what you need to be doing on your computer, as well
as to provide visual interest. I also added a number of special elements to

Excel 2007 Macros Made Easy

x

this book and others in the Made Easy series that set off important additional
information and help you quickly find what you need when you refer back to
the book. Here’s what they are:

Briefingππ   Short, individually titled sidebars on topics that provide you
with important background information related to the tutorial

Memoππ   Marginal notes, tips, and reminders that drive home a point,
provide useful advice, or warn you about potential hazards

The Easy Wayππ   Handy groupings of tips that provide lists of shortcuts
or tricks that make accomplishing tasks even easier

FAQππ   Brief answers to groups of frequently asked questions about the
topic at hand

Linksππ   Pointers to useful external resources for software downloads,
news and information, and technical resources

1
Recording
Macros
The easiest way to create a macro in Excel is by
recording your steps with Excel’s macro recorder.
Then, the next time you want to perform these
steps, you simply turn on the previously recorded
macro and sit back with a nice cup of tea while you
watch the macro do your work for you.

For example, if you would like to automate a
task in Excel, you record yourself performing the
task by turning on a little virtual tape recorder,
which will record each step as you enter it. When
you are finished entering your steps, you turn
off the recorder, and presto! You have a macro!
Well, almost. There are a few pieces of technical
housework that must be performed, such as
naming the macro and deciding where to store it,
but for all practical purposes, macro recording is a
fairly simple business.

Excel 2007 Macros Made Easy

2

Here are the basic steps for recording a macro:

Turn on the macro recorder.1.	

Enter a name for the macro.2.	

Indicate a desired shortcut key for the macro (optional).3.	

Indicate where you want the macro to be stored.4.	

Enter a description for the macro (optional).5.	

Start the recorder.6.	

Enter your steps.7.	

Stop the recorder.8.	

Once you have recorded a macro, you can run your macro in one of two ways:

If you assigned your macro to a key combination, you can press that ππ

key combination at any time to run the macro.

Whether or not you assigned your macro to a key combination, you ππ

can access your macro from the ribbon. You’ll display a macro list,
choose the macro you want to run, and then choose Run.

We’ll go through each of these steps of recording and running macros
and learn what they mean, while actually recording some real-life macros.
Then, later in the chapter, we’ll learn how to test your macros, and we’ll learn
alternative methods for saving and retrieving macros.

Displaying the Developer Ribbon
Macro making is made much easier with the use of the Developer ribbon, a
special toolbar designed to help you with creating, running, and revising your
macros. You can access some of the macro commands from the View toolbar,
but you’ll find your macro experiences will be much easier if you have the
Developer ribbon on display.

� Chapter 1  Recording Macros

3

Follow these steps to add the Developer ribbon to your Excel screen:

Click the Office button in the top-left corner of your Excel screen. The 1.	
Office menu appears.

Click the Excel Options button at the bottom of the menu window.2.	

Make sure the Popular option (see Figure 1-1) is highlighted on the 3.	
left side of the Excel Options window.

Popular options

Developer tab
check box

Figure 1-1  Displaying the Developer ribbon

Excel 2007 Macros Made Easy

4

Click to check the box Show Developer Tab in the Ribbon.4.	

Click OK. The Developer ribbon is now available to you by clicking the 5.	
Developer tab at the top of your Excel screen.

Note that the Developer ribbon is now a permanent part of your Excel
ribbon choices. Should you decide you no longer want to have access to the
Developer ribbon, you can go back to the Excel Options window and uncheck
the box for the Developer ribbon.

Creating a Macro
The first macro we’re going to create is a simple macro that places your
name in a cell. Usually when we record macros, we try to record a task that
we expect to use over and over again. So if placing your name in a cell is
something you’ll do a lot, this macro will work well for you by saving you a
few keystrokes. If you use a company name frequently on your spreadsheets,
or some other familiar text, you can enter that text in this macro instead of
your own name.

Here’s a phrase you’re going to hear over and over again throughout this
book: Take baby steps. What this means is that, when you’re working with
macros, every single keystroke, every little step is significant. So when we
discuss creating and recording macros, we’re not going to skip over any steps.
Even if the steps seem obvious (like placing a space between your first and
last name), we’re going to mention every single step. That way, nothing will
be missed, and your macros will be perfect!

So for our first macro, here are the steps to follow—all the steps:

With your Excel spreadsheet open, place your cellpointer in cell A1. 1.	
This way, we’ll all be in exactly the same place when we start recording
this macro.

Click the Developer tab to open the Developer ribbon.2.	

� Chapter 1  Recording Macros

5

Click the Record Macro option on the ribbon. Alternatively, you could 3.	
click the Macro button that appears at the bottom of your Excel screen
in the left corner.

In the Record Macro dialog box, as shown in Figure 1-2, in the Macro 4.	
Name field, enter NAME1 as the name of this macro. There can be no
spaces in a macro name.

In the Shortcut Key field, hold down the 5.	 shift key and type n so that
ctrl+shift+n will be the keyboard shortcut for this macro. (Note:
I didn’t use ctrl+n for my macro command shortcut because that
keyboard shortcut already exists in Excel as the command to open a
new workbook. If I pressed ctrl+n for the macro shortcut, I would not
receive a warning that ctrl+n already has another use—instead, the
macro usage would supersede the original ctrl+n command.)

In the Store Macro In field, choose “Personal Macro Workbook.” This 6.	
is the universal workbook that is accessible by all Excel spreadsheets.
The other choices are “New Workbook” and “This Workbook.” If you
choose either of these options, the macro is associated with only one
workbook and is not accessible to other workbooks.

Enter an optional Description for this macro. 7.	
You have the option of entering some text
describing what the macro does or when it is
to be used.

Click OK. The macro recorder is now running 8.	
and will record all of your keystrokes.

Back in the spreadsheet, in cell A1, enter your 9.	
name as you wish to record it in this macro,
leaving a space between each word. In my
spreadsheet, I have entered “Gail Perry” in
cell A1.

Macro name

Shortcut key

Storage
location

Optional
description

Figure 1-2  Recording a macro

Excel 2007 Macros Made Easy

6

Press 10.	 enter when you have finished entering
your name. The cellpointer moves to the cell
beneath the one where you entered your name
(in this case, A2).

Click the Stop Recording option on the 11.	
Developer ribbon. Alternatively, you can click
the Macro button at the bottom-left corner of
your Excel screen, as shown in Figure 1-3. The
macro is now recorded.

Test the Macro NAME1
After recording your macro, you’ll want to give it a test drive to make sure that
the macro does what you intended.

Follow these steps to test your NAME1 macro:

Open a new Excel worksheet and place your cellpointer in cell A1.1.	

Press 2.	 ctrl+shift+n.

Your name should now appear in cell A1 and the cellpointer has 3.	
moved to cell A2. The macro is a success!

What happens if you place your cellpointer in a cell other than cell A1 and
press the keyboard shortcut for the macro command? Let’s give it a try. Click in
any other cell (other than cell A1) on the worksheet, then press ctrl+shift+n.
What happens? Your name appears in the cell where your cellpointer resided,
but now the cellpointer is sitting in cell A2. In fact, no matter what cell you
start in, when you run the NAME1 macro, your name will be entered in the
cell where you start, and your cellpointer will return to cell A2.

Why does this happen? If you think back to the creation of the NAME1
macro, you’ll remember that you recorded entering your name in cell A1,
having already placed your cellpointer in that cell before beginning the
recording process. Then you pressed enter, and the cellpointer moved to
cell A2. The macro recorded just that—the process of entering your name in

Stop or start the macro recorder with this button.

Figure 1-3  The Macro button

� Chapter 1  Recording Macros

7

the currently occupied cell, and then the process of your cellpointer moving
to cell A2. So, no matter where you are when you play back this macro, your
cellpointer is going to scurry back to cell A2 after entering your name.

A Different Perspective
on the Macro
Let’s fine-tune the NAME1 macro just a bit. This time, let’s say we want to
ensure that your name is always entered in cell A1 when you run your macro.
We only need to make a small change in the macro in order to accomplish
this task. Instead of placing the cellpointer in cell A1 before we begin
recording, for our second macro, we’re going to turn on the macro recorder
before moving the cellpointer. In that way, the movement of the cellpointer to
cell A1 will become part of the macro.

Here are the steps to follow to create a macro that always places your name
in cell A1:

Click the Record Macro option on the ribbon.1.	

In the Macro Name field, enter 2.	 NAME2 as the name of this macro.

Let’s leave the Shortcut Key field blank for this macro.3.	

In the Store Macro In field, choose “Personal Macro Workbook.”4.	

If you like, enter an optional Description for this macro.5.	

Click OK. The macro recorder is now recording your steps.6.	

Press 7.	 ctrl+home to send your cellpointer to cell A1.

Enter your name as you wish to record it in this macro.8.	

Press 9.	 enter when you have finished entering your name. The
cellpointer moves to cell A2.

Click the Stop Recording option on the Developer ribbon.10.	

Excel 2007 Macros Made Easy

8

Test the Macro NAME2
Open a new worksheet. We’ll test this new macro to see if we get the desired
results. Click anywhere on the worksheet—try clicking in a cell other than cell
A1. Because we didn’t assign a keyboard shortcut to this macro, we’ll need to
access the macro in a different manner.

Follow these steps to run the macro NAME2:

Click the Macros button on the Developer ribbon. The Macro 1.	
window appears.

Click the NAME2 macro—it should appear as 2.	
PERSONAL.XLSB!NAME2.

Click the Run button. Your name should now appear in cell A1, 3.	
and the cellpointer is resting in cell A2.

Yet Another Macro Variation
We’ve created two name macros and each does something a bit different, but
each macro used what we call absolute references. Using absolute references, Excel
records the exact location where you move your cellpointer. If we use relative
references instead, Excel records your cellpointer movement in relation to where
your cellpointer is on the worksheet. This macro should illustrate the difference
between the two types of references. We’re going to create one final macro for
entering your name. In this macro, we’d like the ability to place your name in
any cell in the workbook, and have the cellpointer rest in the cell beneath your
name when the macro is completed. We’ll call this macro NAME3.

Here are the steps for creating the NAME3 macro:

Click the Use Relative References option on the Developer ribbon.1.	

Click the Record Macro option on the ribbon.2.	

In the Record Macro dialog box, in the Macro Name field, enter 3.	
NAME3 as the name of this macro.

� Chapter 1  Recording Macros

9

Leave the Shortcut Key field blank for this macro.4.	

In the Store Macro In field, choose “Personal Macro Workbook.”5.	

If you like, enter an optional Description for this macro.6.	

Click OK. The macro recorder is now recording your steps.7.	

Without moving your cellpointer to a new cell, type your name.8.	

Press 9.	 enter when you have finished entering your name. The
cellpointer moves to the cell beneath your name.

Click the Stop Recording option on the Developer ribbon.10.	

Test the Macro NAME3
Click anywhere on the worksheet—it doesn’t matter what cell you click in.
Now we’ll test NAME3:

Click the Macros button on the Developer ribbon. The Macro 1.	
window appears.

Click the NAME3 macro—it should appear as 2.	
PERSONAL.XLSB!NAME3.

Click the Run button. Your name should now appear in the cell where 3.	
your cellpointer was, and the cellpointer is resting in the cell beneath
your name.

Experiment by clicking on different cells in the worksheet and 4.	
running the NAME3 macro. Each time, your name should appear
where you want it and the cellpointer rests in the cell below.

Note that when you choose to run a macro, it doesn’t matter if the Use
Relative References option is turned on or off. This option only affects the
macro when it is recording.

Pay attention to the importance of deciding what cells your cellpointer is in
both before and after you start recording the macro. Tiny decisions like this

Excel 2007 Macros Made Easy

10

form the crux of successful macro writing. You need to develop a mindset
where you think of every contingency as you make decisions about how you
will create your macros.

As you can see, each of these three macros works differently:

NAME1 places your name in any cell, wherever your cellpointer is ππ

located, and returns the cellpointer to cell A2 when it is finished.

NAME2 places your name in cell A1, no matter from which cell you ππ

run the macro. Your cellpointer returns to cell A2 when the macro is
finished.

NAME3 places your name in any cell, wherever your cellpointer is ππ

located, and returns the cellpointer to the cell beneath your name.

These little macros are simple, performing only one task. The differences
between these macros are subtle, but significant. As we progress through the
rest of this book, learning more about how macros are recorded and created,
you’ll see that the issues addressed in these three macros will be considered
frequently.

Simple Date Macro
Using the knowledge you’ve gained already in this chapter, let’s create a
simple macro that puts today’s date in the cell of your choice. First, decide
how you want the date to appear. There’s already a built-in formula in Excel
that places today’s date in a cell. But that date isn’t static—it changes each
time you reopen the spreadsheet. Suppose you want today’s date in a cell, you
want the date to remain permanently in the cell without updating, and you
want it to appear in a format like this:

February 2, 2008

First, decide how you would enter the date if you were typing it. Remember,
baby steps. I think I would first click on the cell where I want the date to appear.
Then I’d use the TODAY formula to enter today’s date. But that formula uses

� Chapter 1  Recording Macros

11

a format of 2/2/08, and I want to see the format I displayed above. So next
I’d need to change the format of the cell to the date style I prefer. But I’ve still
got a problem—that cell is going to update every time I open the worksheet.
I want the date to remain static. So next I’m going to copy the date to the
clipboard. Finally, I’ll use the Paste Special command to paste the value of the
cell into the cell itself, replacing the formula. Finally, I’ll press esc to empty
the clipboard. This actually takes quite a few steps. That’s why I want a macro
to do this for me, so I don’t have to go through all of those steps in the future
when I want to assign a static date to a cell. Here goes:

Click in the cell where you want the date to appear.1.	

Click the Developer ribbon.2.	

Click to turn off the Use Relative References feature if it is activated—3.	
we don’t need that feature for this macro.

Click the Record Macro button.4.	

In the Record Macro dialog box (see Figure 1-4), enter a macro name 5.	
(I’ve used TodaysDate—remember, you can’t use spaces).

Store this macro in the Personal Macro Workbook.6.	

Enter an optional description.7.	

Click OK.8.	

Now it’s time for the steps described in the beginning 9.	
of this section. First, click the Formulas ribbon.

Click the Date & Time option.10.	

Click TODAY.11.	

In the Function Arguments box that appears, click OK.12.	

Right-click on the date.13.	

Figure 1-4  Recording the date macro

Excel 2007 Macros Made Easy

12

Choose Format Cells from the pop-up menu.14.	

Click the Date category in the Format Cells window.15.	

Choose March 14, 2001 as the Type. (Note: There is a list of Date types 16.	
available on the Home ribbon, but this particular type does not appear
on that list.)

Click OK. Your date now appears correctly. But this date still 17.	
incorporates the TODAY function, which means that it will change if
you open the worksheet tomorrow. So, we’re not done yet.

Click the Home ribbon.18.	

Click the Copy option. (Note: You could also have right-clicked on the 19.	
date and chosen Copy from the pop-up menu.)

On the Home ribbon, click the arrow under the Paste option.20.	

Choose Paste Values. Notice that the value in the Formula bar changes 21.	
from TODAY() to today’s actual date.

Press 22.	 esc.

Click the Developer ribbon.23.	

Click Stop Recording.24.	

Whew! Twenty-four steps to put a date in a cell. Aren’t you glad we’ve
recorded this task for future use? Try out your macro by clicking in another
cell, clicking the Macros option on the Developer ribbon, and clicking the
TodaysDate macro, then clicking the Run button. Nice date.

Formatting with Macros
Here’s another easy but repetitive task that you can automate with a macro.
Say you have a little worksheet that you prepare each month. The titles and
formatting and formulas on the worksheet are unchanging, month after
month. Often what you do when it’s time for a new worksheet is to open last

� Chapter 1  Recording Macros

13

month’s worksheet, delete the numbers, save it as this month’s worksheet,
and fill in this month’s numbers. I wouldn’t be surprised if at least once you
deleted last month’s numbers and saved the new numbers for this month
using the name for last month’s worksheet. Oops!

By creating the skeleton for your worksheet as a macro, with formulas and
formatting and titles, it’s an easy task to open a new worksheet file, play back
your macro to set up the sheet, and then drop in this month’s numbers safely,
without having to worry about saving over last month’s information.

Let’s try it. Figure 1-5 shows the very simple
worksheet we’ll create.

Here is a summary of the steps required to
create this worksheet: On an empty worksheet,
enter Month: in cell A1, then enter the city names
Chicago, Peoria, and Danville in cells B2, C2, and
D2. Enter Total in cell E2. Make these totals bold

as you enter them. Enter the titles Sales, Expenses, and Profit in cells A3, A4,
and A5. Make these titles bold as you enter them. In cell B5, enter a formula
to subtract sales from expenses. Copy the formula to C5 and D5. Enter a SUM
formula to add cells B3 through D3 and enter the result in cell E3. Copy the
formula to cells E4 and E5.

Here are the steps for recording this as a macro called MonthlyReport.
Notice that I avoided using my mouse to drag over cells for formatting or
creating formulas.

With a blank worksheet open, click the Developer ribbon.1.	

Turn on the Use Relative References feature.2.	

Click Record Macros.3.	

Enter 4.	 MonthlyReport as the name of this macro.

Save the macro in the Personal Macro Workbook.5.	

Enter a description if you want to.6.	

Figure 1-5  Simple worksheet

You might think that
a template is a good
alternative tool for
creating a worksheet
skeleton, and you’d
be right. However, the
advantage of using a
macro for this task is
that you can call up
the worksheet skel-
eton anywhere using
the macro, even in an
existing worksheet.

Memo

Excel 2007 Macros Made Easy

14

Click OK.7.	

Enter 8.	 Month: in cell A1.

Enter 9.	 Chicago in cell B2. Return to B2 and press ctrl+b to make the
title bold.

Enter 10.	 Peoria in cell C2 and make it bold; enter Danville in cell D2 and
make it bold; enter Total in cell E2 and make it bold.

Enter 11.	 Sales in cell A3 and make it bold; enter Expenses in cell A4 and
make it bold; and enter Profit in cell A5 and make it bold.

Arrow over to cell B5.12.	

Type an equal sign (13.	 =) and then arrow to B3, type a hyphen (-), and
then arrow to B4. Press enter to complete the formula.

Copy the contents of cell B5 (I used 14.	 ctrl+insert—you can also right-
click and choose Copy, or click Copy on the Home ribbon).

Paste to cells C5 and D5.15.	

Arrow over to cell E3.16.	

Enter the formula 17.	 =SUM(, and then arrow over to B3, hold down your
shift key, and arrow over to cell D3.

Press 18.	 enter.

Copy the contents of cell E3 down to cells E4 and E5.19.	

Click the Developer ribbon and turn off the macro recorder, or click 20.	
the Macro button in your taskbar to turn off the recorder.

Test your macro first by entering data in the worksheet to make sure the
formulas work, and then by clicking elsewhere on your worksheet or on a
new worksheet and running the MonthlyReport macro to display your report
skeleton.

If any of your macros
don’t work, don’t
worry about that at
this point. We will
discuss debugging
macros in the next
chapter.

Memo

� Chapter 1  Recording Macros

15

Saving Macros
When you created your three NAME macros, you were given three options for
saving the macros. We chose to save all three of the macros to the Personal
Macro Workbook. This workbook loads automatically when you open Excel,
and it is available to all workbooks, so these three macros are now available to
all of your Excel workbooks, including workbooks you might have created and
saved previously.

Saving to the Personal Macro Workbook
You’ll find that when you attempt to close Excel, you will receive a message
asking if you want to save the changes you made to your Personal Macro
Workbook. If you click Yes, your macros will be saved and available to you the
next time you open Excel.

The Personal Macro Workbook is a hidden workbook, not normally accessible
as a workbook you can view. The file name is Personal.xlsb. Later in this book
we’ll talk more about the Personal Macro Workbook.

Saving to This (the Current) Workbook
Another option is to save the macros to this workbook. Some macros relate
to specific workbooks and aren’t of use in other workbooks. For example,
if you create a macro that offers the user the option of performing certain
calculations on the data in an existing workbook, and the calculations relate
only to that workbook, there is no need to make the macro universally available
in the Personal Macro Workbook. Instead, you would save a macro like this to
the current workbook.

When you choose to save a macro to your current workbook, you must also
save the workbook in order to keep the macro. When you are ready to save a
workbook that contains a macro, you must choose Macro-Enabled Workbook
as your workbook type. When the Save As window appears, follow these steps:

Choose the folder where you want to save the workbook in the Save In 1.	
field (see Figure 1-6).

Excel 2007 Macros Made Easy

16

Enter the workbook name in the File Name field.2.	

Choose Excel Macro-Enabled Workbook in the Save as Type field.3.	

Click Save.4.	

Saving to a New Workbook
The third option is to save a macro to a new workbook. Some people want to
create macros that are available to them for use in other workbooks, but they
don’t want to make them available universally through the Personal Macro
Workbook. By saving macros in a new workbook, you choose when you want
the macro to be available by simply opening that workbook.

Enable macrosWorkbook nameLocation of workbook

Figure 1-6  Saving a worksheet that contains macros

Caution! It will appear
that there is nothing
in this new workbook!
However, when you
try to save the new
workbook, you will be
prompted to save the
workbook as a macro-
enabled workbook.

Memo

� Chapter 1  Recording Macros

17

As soon as you choose to save your macro to a new workbook, Excel opens
a new workbook on your screen. Excel gives the new workbook the name Book
followed by a number. If you previously have only opened one workbook in
this Excel session, the new workbook is called Book2, until you save it and
give it a new name. If you previously have opened two workbooks, the new
workbook is called Book3, and so on.

When you want to use the macro that has been saved to a new workbook,
you must open that workbook. As long as that file is open, your macro will be
available to all Excel workbooks that are open on your computer.

 In Chapter 2, “Editing Macros,” we take a look at the inner workings
of macros and learn how to edit and correct problems in macros we’ve
already created.

Note that if you
choose not to save
the new workbook,
your new macro will
be lost.

Memo

This page intentionally left blank

Editing Macros
In this chapter we’re going to talk about making
simple corrections and changes to macros that you
have recorded. We’ll use the Visual Basic Editor
to access the macros you have already created
in Chapter 1. We’ll look at those macros, study
the way in which they were created, and do some
easy editing. Later in the book we’ll learn about
designing macros from scratch by using the Visual
Basic Editor, and that will be important because
many macros can’t be recorded and instead have to
be written out, step by step. By the time we’re ready
to work on writing macros, you’ll be comfortable
with the Editor, and the idea of designing a macro
by typing the commands won’t seem daunting.2

Excel 2007 Macros Made Easy

20

Open the
Visual Basic Editor
Opening the Visual Basic Editor is so easy that you
can do it in one step:

In the Code group on the Developer 1.	
ribbon, as shown in Figure 2-1, click Visual
Basic.

That’s it—you’ve opened the Editor!

Examine the
Visual Basic Editor
Let’s take a little tour of the VB Editor because
this screen looks quite a bit different from your
normal Excel worksheet. We’ll look at some of the
elements of the Editor with which you’ll want to be
familiar.

Project Explorer
The Project Explorer appears on the left side of
the Visual Basic screen, as shown in Figure 2-2. If
you don’t see the Project Explorer, choose View |
Project Explorer from the menu, or press ctrl+r.
The Explorer displays a list of all workbooks
currently open in Excel, including the Personal
Macro Workbook (PERSONAL.XLSB), which
is always open but is a hidden workbook. The
Microsoft Excel objects appear as a submenu.
Beneath each Workbook title are entries for each
sheet in the workbook and one entry for the
entire workbook. Clicking on any of the sheet

Click the Visual
Basic option.

Figure 2-1  The Code group on the Developer ribbon

Workbook
titles

Object
submenu

Objects

Modules

View
Code

button

View Object
button

Toggle Folders
button

Figure 2-2  The Project Explorer

� Chapter 2  Editing Macros

21

names or on the This Workbook entry allows you to see a list of the properties
associated with that sheet or workbook in the Properties window (which
will be explained in more detail in the section “Properties Window” later
in this chapter). If macros have been created within the workbook (and we
created several macros in Chapter 1 that are housed in the Personal Macro
Workbook), you will see a submenu for modules beneath the workbook title
(Module1, Module2, and so on). The modules contain procedures (macros)
that Excel can execute.

There are three buttons at the top of the Project Explorer. Click the View
code button to display a code window on the right side of your VB screen.
(The Code window will be explained in more detail in the section “Code
Window” later in this chapter.) If the code window is already displayed,
clicking this button does nothing. Note that you must select a module first
in order to activate this button. Click the View Object button with an object
selected (such as one of the sheets or workbooks displayed in the project list),
and the code for that object appears. For example, you can quickly display
Sheet1 of Book1 by clicking on that sheet name and then clicking the View
Object button. The Toggle Folders button alternately hides and shows the
folders in the Project window.

Modules
The modules are where the macros are stored. If you’ve created macros
that were saved to a particular workbook, that workbook will have a module
associated with it and that module will appear in the Project Explorer when
that workbook is open. The Personal Macro Workbook contains modules as
well, and the code for the macros you created in Chapter 1 resides in these
modules. You can click once on a module name and click the View Code
button to display the code.

Properties Window
The Properties window displays the attributes that are associated with the
various Excel workbooks and sheets that are displayed in the Project Explorer.

Double-clicking on a
module name opens
a code window that
displays the code
for all macros that
reside within that
module.

The Easy Way

Excel 2007 Macros Made Easy

22 If the Properties window isn’t visible on your screen, choose View | Properties
Window from the VB menu, or just press f4. There are two tabs in the
Properties window, Alphabetic and Categorized, as shown in Figure 2-3. Each
tab lists the same information, just in a different order. Click on a worksheet
or workbook in the Project Explorer and you will see the properties associated
with that worksheet or workbook in the Properties window. A module doesn’t
have any properties associated with it (other than its name).

Code Window
The code window displays the Visual Basic code associated with the item that
is selected in the Project Explorer. You can double-click on an item in the
Project Explorer to view the code associated with that item. For example, in
Figure 2-4, the code for the macros stored in Module 3 of the Personal Macro
Worksheet is displayed.

Figure 2-3  Attributes of the
selected workbook

� Chapter 2  Editing Macros

23

Learning to Read Macros
Let’s examine the three NAME macros that we created in Chapter 1. These
macros are quite similar to one another, but each one provides us with an
opportunity to learn some of the basics of how the macro programming
language works. Figure 2-5 shows the code for the NAME1 macro.

Figure 2-4  Macro code in the code window

Excel 2007 Macros Made Easy

24

NAME1 Macro
As you recall, the NAME1 macro created in Chapter 1 involved you placing
your cellpointer in cell A1 before recording, and then you turned on the
recorder, entered your name, and pressed enter. Looking at the macro code
for NAME1, this is what we see:

* Sub NAME1()

Each macro that performs a task is called a Sub procedure. The first line of a
Sub procedure begins with the word Sub followed by the name of the macro.
In this case, the name of the macro is NAME1. If the macro were called
“ProductMenu,” the first line would read:

Sub ProductMenu()

After the macro name is a pair of parentheses. If the macro requires some
particular information in order to perform its task, that information, called
arguments, is listed inside the parentheses.

As you look at the macro in the code window, you’ll notice that some lines
begin with apostrophes and other lines don’t begin with an apostrophe.

Start of Sub procedure

Informative
text

Macro code

End of Sub
procedure

Figure 2-5  The NAME1
macro

In addition to
macros, you can
record user-defined
functions in the
Visual Basic Editor.
Functions begin
with the word
Function instead
of Sub. Functions
are discussed in
Chapter 3.

Memo

� Chapter 2  Editing Macros

25

Comment Lines
Several lines that follow the Sub Name line begin with an apostrophe. This
apostrophe distinguishes the lines as informative text that does not affect the
operation of the macro, often called comments. Information you might see in
this comment area includes the name of the macro, any optional description
information you entered when you created the macro, and a keyboard shortcut
associated with the macro. In the case of the NAME1 macro, the descriptive
information includes a line showing the name of the macro and a line showing
the keyboard shortcut of ctrl+shift+n. You are allowed to write additional
information here. As long as you begin your lines with an apostrophe, you can
enter comments that will not impact the operation of the macro.

Command Lines
The lines that follow the informative information in Figure 2-5 are the command
lines. This is the part of the macro that contains the Visual Basic code language
that runs the operation of the macro. Depending on the complexity of the macro
and the number of commands the macro must perform, this area might be
quite short (NAME1 has only two lines of code) or quite lengthy. Let’s look more
closely at the command lines included in the NAME1 macro.

ActiveCell.FormulaR1C1 = "Gail A. Perry, CPA"

ActiveCell refers to the cell in which your cursor resides. FormulaR1C1
means that for purposes of this macro, the active cell is designated as Row
1 Column 1 (R1C1). This is the point from which this macro is launched,
so any references to cell movement in the macro would be made in relation
to this cell, the cell in the first row, and the first column from which your
cellpointer is starting. No matter what cell you designate as the active cell
when you begin running this macro, that cell is considered to be R1C1 for
purposes of this macro. See the discussion about the macro, NAME3, in the
section “NAME3 Macro,” for more information on this statement. In the
NAME1 macro, this information is not used.

 = "Gail A. Perry, CPA"

Excel 2007 Macros Made Easy

26

The information in quotation marks, "Gail A. Perry, CPA", is the
information that this macro will place in the cell.

Range("A2").Select

Range refers to the range of cells that will be selected in this macro.
("A2") is the specific range of cells to which this command line is

referring. So the range of cells “A2” refers to the single cell, A2.
Select is what the macro has been instructed to do with the specified

range of cells. In this case, the macro instruction is to select cell A2.
End Sub is always the last line of a macro.
In addition to learning the basic macro commands we’ve seen in our

NAME1 macro, you should also examine the format of the macro. The first
and last lines appear at the left margin. The apostrophes that appear to the left
of the informational text also appear at the left margin. The macro command
lines are indented.

You will be able to see the nuances that accompany the slight change in
commands for macros NAME2 and NAME3.

NAME2 Macro
The difference between the NAME1 and the NAME2 macros is that when
we recorded the NAME1 macro, we began by placing our cellpointer in cell
A1 before recording. The NAME2 macro in the VB Editor (see Figure 2-6) is
nearly the same as the NAME1 macro, except for these differences:

There is no keyboard shortcut for NAME2.ππ

There is a bit of descriptive text for NAME2 (“name in cell A1”).ππ

There is one additional command in NAME2:ππ

Range("A1").Select

This code that appears as the first line of code in NAME2 is the code that
was recorded when we moved the cellpointer to cell A1 after turning on the
macro recorder.

� Chapter 2  Editing Macros

27

NAME3 Macro
The difference between the NAME3 macro and the other macros is that
the NAME3 macro works from any location, instead of either assuming the
user will put the cellpointer in cell A1 or forcing the cellpointer to go to cell
A1. With NAME3, the user begins with the cellpointer in any cell, runs the
macro, and the cellpointer ends at the cell beneath the starting cell. The code
that places the name in the cell (ActiveCell.FormulaR1C1 = "Gail
Perry") remains the same throughout all three macros. Notice the slight
difference in the code for the NAME3 macro shown in Figure 2-7.

The last line contains this code:

ActiveCell.Offset (1, 0).Range("A1").Select

This Offset command indicates cursor movement. The macro command is
indicating that the new active cell is the cell one row down and 0 columns to the
right (1, 0) of the previous cell. The statement Range("A1").Select indicates
that, for purposes of this macro, the new cellpointer location will be referred to
as cell “A1.” This cell location can be anywhere on the worksheet, depending
on where your cellpointer is when you run the NAME3 macro, but as far as the
macro is concerned, your new cell location is cell A1, and this is how the cell will
be referred to if there is any additional macro code added to this macro.

Descriptive
information

Code to begin the
macro at cell A1

Figure 2-6  The NAME2 macro

Excel 2007 Macros Made Easy

28

Editing Macros
It’s easy to make editing changes in the macros you see in the VB Editor. You
can type in the macros just as you would in any document, keeping in mind
of course that, when typing actual command code, you must use actual Visual
Basic commands. But you can change the name of a macro, you can enter or
change explanatory information in the comment areas of the macro, and you
can change, add, and remove macro code.

Here’s an easy change. Let’s say you want to change the name you used
in the NAME3 macro. I entered my name, “Gail Perry,” but maybe instead I
want to use my middle initial and my professional designation: “Gail A. Perry,
CPA.” (Or perhaps you misspelled your name and you want to correct the
spelling!) I can edit the name as it appears on the first line of macro code to
read the way I want it to:

ActiveCell.FormulaR1C1 = "Gail A. Perry, CPA"

If I go to a worksheet page and run the macro, NAME3, the change will
have already taken place and the revised name appears on my worksheet.

Offset code
appears.

Figure 2-7  The NAME3 macro

� Chapter 2  Editing Macros

29

Saving an Edited Macro
Even though you make a change in your macro and you test the macro and
see that the change has been recorded, there is one more step necessary
to saving a macro. That change you made will be effective in any of your
worksheets, as long as you don’t close Excel. As soon as you try to close Excel,
you will be asked if you want to save the changes you made to the Personal
Macro Workbook. You must answer Yes to this question if you want your
changes to be permanently saved.

Instead of waiting to
save your macros when
you exit Excel, you can
save at any time right in
the Visual Basic screen
by using either of these
techniques:

Press ππ ctrl+s.

Click the Save icon on the Visual Basic toolbar (see Figure 2-8).ππ

Finding Help in Visual Basic
When you have questions, you’ll find that there is ample help available to you
in the Visual Basic Editor.

If you want additional information about any of the code that appears in ππ

your macro, right-click on a code line and choose Quick Info. Each item
of code is considered to be an object. When you ask for Quick Info, a
balloon appears with information about what type of object this is.

You can find more detailed information about the Visual Basic objects ππ

in the Object Browser. From within the Visual Basic Editor, press f2,
choose View | Object Browser from the menu, or click the Object
Browser button on the toolbar (see Figure 2-9).

Click here to save.

Figure 2-8  Save changes
made in Visual Basic.

Excel 2007 Macros Made Easy

30

The Object Browser window appears, as
shown in Figure 2-10. Enter the command
or statement you want to explore in the
Search Text field. Click the binoculars
button to perform the search. When the
results appear, click the statement or
command in the results list, and then click
the Help button for more information.

Another way to get into the Visual Basic ππ

Help system is to choose Help | Microsoft
Visual Basic Help from the menu. Enter
the name of the object about which you
want additional information, and then click
Search. Alternatively, you can enter the
information for which you are searching in
the Help field on the far right side of the VB
toolbar, where it says “Type a question for
help” (see Figure 2-11), and then press enter.

Object Browser button

Figure 2-9  The Visual Basic toolbar

Enter command or
statement here.

Click to perform
search.

Click on
results. Help

Figure 2-10  The Object Browser window leads to more help.

Enter your question here.

Figure 2-11  Quick access to Excel Help

� Chapter 2  Editing Macros

31

When you examine the Help information for a VB object, you’ll see
a definition, some narrative text of how the object can be used, an
example of VB code using the object, and a description of the results
that will be produced.

You can search the contents of the Excel Developer Reference material, ππ

and you might find this better organized and less overwhelming than
searching all through the Help system. Choose Help | Microsoft Visual
Basic Help from the menu, or press f1. The Excel 2007 Developer
Reference appears. Click Excel Object Model Reference. Here you’ll
see a detailed list of VB objects. Click an object and drill down to find
additional information about that object.

One of the best ways to learn about the usage of VB objects is to record ππ

macros as we did in Chapter 1 and then study the resulting code in
the VB Editor. By examining the code associated with a macro that
successfully performs the steps you recorded, you approach your learning
session already knowing what the code does. Then it’s simply a matter of
familiarizing yourself with which code statements perform which tasks.

Easiest Way to Get Help
Let’s say we want to go back to the NAME3 macro and, in addition to entering
our name in a cell, we want the macro to center the name in the cell. We need
to determine the macro command for centering text. You can find what you’re
looking for in the Excel Developer Reference, but first it helps to know that cell
alignment, such as left, center, and right, is considered to be horizontal alignment.
Knowing this, you can work your way through the Developer Reference to finally
find the screen that describes how to assign the value of center to the horizontal
alignment. But there is a much easier way: Record a macro!

At any time, you can record a macro that performs a task. Then examine
the macro in the VB Editor, find the code you need, and copy and paste that
code into your existing macro. After that, you can delete the sample macro
you created because you no longer need that.

You don’t have to
enter your query in
question form.

Memo

Excel 2007 Macros Made Easy

32

For the example of centering text, follow these steps:

Head back to your worksheet (click the View Microsoft Excel button at 1.	
the far left side of the VB toolbar).

Turn on the macro recorder (Developer ribbon, Record Macros).2.	

Name this macro Test1, and save it in 3.	 this workbook. There’s no need
to use the Personal Macro Workbook for this macro—we won’t need
access to this macro from any other worksheet.

With your cellpointer in any cell, display the Home ribbon, and then 4.	
click the Center Text button. There doesn’t have to be any text in the
cell in order to perform this task, and it doesn’t matter which cell you
use. All we’re doing here is harvesting code.

Display the Developer ribbon and click Stop Recording.5.	

Click the Visual Basic button to return to the VB Editor.6.	

You’ll see that a module for the current workbook has been added 7.	
in the Project window. Double-click that module to display the code
window. The Test1 macro appears (see Figure 2-12).

Notice that there are several attributes that have been assigned to the 8.	
selection in the Test1 macro. Whenever you apply a formatting change
such as the centering command to a cell, the associated macro code
shows a group of attributes. For our situation, we only need the code
for centering text. That would be

 With Selection

 .HorizontalAlignment = xlCenter

 End With

The rest of the formatting statements are not a necessary part of the
command to center text in a cell.

Your VB window is
most likely still open.
Pressing alt+tab will
allow you to quickly
flip over to the VB
window.

The Easy Way

� Chapter 2  Editing Macros

33

Copy and paste the three lines of code shown in step 8 above into 9.	
your NAME3 macro, beneath the line that describes the content of the
ActiveCell and before the line that contains the Offset command.
(I copied and pasted the entire block of code, and then deleted the
lines I didn’t need.) Your NAME3 macro will now look like this (with
your name in place of mine):

Sub NAME3()

'

' NAME3 Macro

' Name in any cell, cellpointer goes to cell beneath name.

'

'

 ActiveCell.FormulaR1C1 = "Gail A. Perry, CPA"

 With Selection

Code for centering
cell contents

Figure 2-12  Macro code for
cell formatting

Excel 2007 Macros Made Easy

34

 .HorizontalAlignment = xlCenter

 End With

 ActiveCell.Offset(1, 0).Range("A1").Select

End Sub

Go back to your worksheet and test the Name3 macro by clicking in 10.	
any cell, clicking Macros on the Developer ribbon, choosing NAME3,
and clicking Run. You’ll see that your name appears in the current
cell, and it is centered.

You no longer need the Test1 macro. Return to the VB Editor and in 11.	
the Project window, right-click on the module containing that macro,
and choose Remove Module1. You’ll be asked if you want to export the
module before removing it. Answer No. The module is gone, the Test1
macro is gone, and you’ve cleaned up the clutter.

Remember, when you
close Excel, you’ll be
asked if you want to
save the changes in
your Personal Macro
Workbook. Be sure to
answer Yes in order
to save the changes
you made to the
NAME3 macro.

Memo

3
Creating Macros
in Visual Basic
We’re going to enter the world of macro building
the easy way—using the principles we’ve already
begun exploring in Chapters 1 and 2. In this chapter
we’ll create several useful macros as we continue
to familiarize ourselves with Visual Basic. Since the
point of this book is to learn macro construction
at a comfortable and understandable pace, this
chapter will focus on recording macros and then
using the recorded code to make new macros.

Since you already know how to perform many
tasks in Excel (I’m taking it for granted that if you’re
ready to build macros, you’ve already mastered the
basics), we’ll take advantage of the knowledge you
already possess to create macros that can make
your Excel experiences easier, more efficient, and
more rewarding.

Excel 2007 Macros Made Easy

36

First, we’ll create macros that perform some repetitive tasks. There are two
types of repetitive tasks:

The tasks you perform frequently, in different worksheetsππ

The tasks that require repetition within a single worksheetππ

We’re primarily concerned with the first type of repetitive task here. When
we get to Chapters 10 and 11, we’ll learn about macros that repeat themselves
within a single worksheet.

In addition, we’ll learn about applying what we know about macros to
create customized functions.

Display Formulas as Values
There are times when you want to make a worksheet available to someone
else who doesn’t need to see the formulas that are used to calculate the
numbers on the sheet. This macro enables you to quickly remove formulas
from selected cells. After you’ve applied the macro, the value that appears in
the Formula bar is the same as the value in the cell; no formula appears in
the worksheet.

Begin by opening a worksheet that contains formulas. The worksheet in
Figure 3-1 has formulas that calculate the commission for various salespeople
and those formulas are confidential, so we want to hide the calculation in the
Bonus column.

The first step in creating a macro should be to think through the process of
how the procedure should be accomplished. Remember to use baby steps! To
change the formula in a cell to a value, here are the steps I would follow:

Click on the cell containing the formula.1.	

Copy the formula to the clipboard (click the Copy button on the 2.	
Home ribbon).

Open the Paste menu (click the Paste arrow on the Home ribbon).3.	

� Chapter 3  Creating Macros in Visual Basic

37

Choose Paste Values.4.	

Remove the marquee indicating the cell contents are still in the 5.	
clipboard (press enter or esc).

Now that I’ve figured out the steps, it’s time to record that process in a
macro. Here are the steps to automate this process and make the macro
available to other worksheets:

With the worksheet containing formulas open, click on a cell that 1.	
contains a formula that you want to hide.

Click Record Macro on the Developer ribbon. There’s no need to use 2.	
relative references for this macro because we want to be able to apply
the macro on a cell-by-cell basis, not have it relate to specific cells.

Name the macro. I’ve used FormulaToValue.3.	

Paste arrow Change this formula to a value.

Figure 3-1  Formulas appear in the Formula bar.

We’re selecting the
cell before recording
the macro—we don’t
want the macro to
make a cell selection
for us.

Memo

Excel 2007 Macros Made Easy

38

Make sure the macro is going to the Personal Macro Workbook.4.	

Click OK. I didn’t give this macro a description—the macro name 5.	
seems descriptive enough.

Click Copy on the Home ribbon.6.	

Click the Paste arrow on the Home ribbon.7.	

Click Paste Values. Notice the formula in the Formula bar immediately 8.	
changes to a value.

Press 9.	 esc.

Turn off the macro recorder.10.	

Test the Macro
Give your macro a trial run: Click on a cell containing a formula, click the
Macros button on the Developer ribbon, choose FormulaToValue, and then
click Run.

Now let’s try selecting a range of cells and running the macro again. Just as
you can select a range of cells and perform other operations, you can use your
macro in the same way. Highlight a range of cells containing formulas, and
then click Macros, and choose FormulaToValue. All of your highlighted cells
now contain just the values and the formula no longer appears.

View the Macro Code
It’s time to take a look at this macro in the Visual Basic Editor. Click the
Visual Basic button on your Developer ribbon. The code for your macro will
be located in one of the modules of the Personal Macro Workbook. You’ll
see the Personal Macro Workbook in the Project window. You can view the
code in the modules within that workbook by double-clicking on the module
names in the Project window. Alternatively, you can choose Tools | Macros in
the VB Editor, set the Macros In field to VBAProject (PERSONAL.XLSB), and
when you see the macro you want to view in the Macro Name list, click on it,
and then click the Edit button.

Changing a cell from
formula to value is a
permanent process.
Once the formula is
removed, there’s no
going back to display
the formula again.

Memo

� Chapter 3  Creating Macros in Visual Basic

39

Here’s the code that appears:

Sub FormulaToValue()

 Selection.Copy

 Selection.PasteSpecial Paste:=xlPasteValues,

Operation:=xlNone, SkipBlanks _

 :=False, Transpose:=False

 Application.CutCopyMode = False

End Sub

Examining the code, we see that the first line of code under the macro
name, Selection.Copy, copies the selected cell to the clipboard. Next
the Paste Special command is executed, but look at all of the statements that
follow Selection.PasteSpecial:

Paste:=xlPasteValues,

Operation:=xlNone,

SkipBlanks:=False,

Transpose:=False

All of these statements represent the baggage that comes along with using
the Paste Special command in Visual Basic. The only command that actually
executes a change in the worksheet is the Paste:=xlPasteValues
command. The rest of the commands are superfluous and are unnecessary in
the execution of this macro. You can remove the rest of the commands if you
want to clean up your macro code, but it does no harm to leave them there.

The last line of the code, Application.CutCopyMode = False,
is the command that was recorded when you pressed the esc key. This
command removes the information from the clipboard and removes the
marquee from the selected cell(s).

If you want to experiment further, you can remove the excess baggage (the
Operation, SkipBlanks, and Transpose lines) information from the
macro and then test the macro again. You’ll see that the macro works fine

Excel 2007 Macros Made Easy

40

and removes the formulas from your cells, replacing them with values. The
cleaned-up macro code will look like this:

Sub FormulaToValue()

' FormulaToValue Macro

 Selection.Copy

 Selection.PasteSpecial Paste:=xlPasteValues

 Application.CutCopyMode = False

End Sub

Make One Macro
out of Little Macros
Looking at the new ribbons in Excel, you can see that Microsoft has made
many commands available to you with the quick click of a mouse. Commands
that you once had to search through menus to find are now visible on
the ribbons. But even though the commands are visible, you still have to
execute some steps to use them. First, you have to figure out which ribbon
your command is on, and then you have to search for the command icon or
look through the little drop-down menus that appear here and there on the
ribbons. Some commands can be found on the context menu (the pop-up
shortcut menu) or the mini-toolbar that appears when you right-click in the
worksheet.

If you routinely use several commands when creating or editing
worksheets, save yourself time by placing those commands in a macro. That
way, each time you open a new worksheet, if you need to apply these changes,
you can do so all at once by running one macro. You can try recording a
macro using all of the commands at once, but you might find it’s easier to
record each command separately and then put all the commands together
into one macro in the VB Editor.

� Chapter 3  Creating Macros in Visual Basic

41

For this exercise, we’ll record macros that execute these tasks:

Set the gridlines so they will printππ

Change page orientation from portrait to landscapeππ

Expand the column width to 10ππ

Record the Little Macros
The first macro we’re going to record will turn on the gridlines for purposes
of printing the workbook. Typically, the gridlines are for display only—they
don’t print unless you ask for them. Turning on the printable gridlines
requires you to check the Print Gridlines feature on the Page Layout ribbon.

Turn on the macro recorder.1.	

Let’s call this macro Gridlines.2.	

Save the macro in 3.	 this workbook. We’re not going to need this little
macro—we’ll harvest the code we need and then we can delete the
macro when we close the workbook without saving.

Click OK.4.	

Click the Page Layout ribbon.5.	

In the Sheet Options area of the ribbon, check the Print box beneath 6.	
the Gridlines feature (see Figure 3-2).

Turn off the recorder.7.	

Click to check the Print Gridlines box.
Figure 3-2  Changing sheet
options

Excel 2007 Macros Made Easy

42

Next we’ll record a macro to change the page orientation from Portrait
(default) to Landscape. To perform the task in Excel, we activate the Page
Layout ribbon, click the arrow for Orientation choice, and then click
Landscape, as shown in Figure 3-3. So let’s record this:

Turn on the macro recorder.1.	

Name: 2.	 Landscape. Location: This workbook.

Click the Page Layout tab.3.	

Click the Orientation arrow.4.	

Click Landscape.5.	

Turn off the recorder.6.	

As you can see, this process of recording macros is really quite easy. We’ve
got one more macro to record, and then it’s time to put our project together

into one macro we can use repeatedly. For this final
macro, we want to expand our column width so that
it will display 10 characters (as opposed to the default
8.43 characters). We need to decide how many columns
will get this designation. The easiest way to proceed
is to change the width of the columns on the entire
worksheet. That way we’re covered for any number
of columns that might be needed. Therefore, when

recording this macro, we’ll select the entire worksheet, and then make the
column adjustment so that all columns are affected. Finally, we’ll add a step to
click on cell A1 so that the selection of the entire workbook will be turned off.
Here are the steps:

Turn on the macro recorder.1.	

Name: 2.	 ColumnWidth. Location: This workbook.

You might be wonder-
ing what you should
do if, when you
displayed the Page
Layout ribbon, the
Print Gridlines box
was already checked.
The macro recorder is
running but you can’t
perform the task. Go
ahead and click in the
Print Gridlines box.
This will have the
effect of unchecking
the Print box. No
matter. We’ll fix this
up in the VB Editor.

Memo

Click the Landscape option.

Figure 3-3  Changing
orientation

� Chapter 3  Creating Macros in Visual Basic

43

Click the Select All box that appears above the row number 1 and to 3.	
the left of Column A.

Right-click over a column letter and choose Column Width from the 4.	
shortcut menu.

In the Column Width dialog box (see Figure 3-4), enter 5.	 10 for the new
width.

Click OK.6.	

Click on cell A1.7.	

Turn off the macro recorder.8.	

Test the Macros
Before proceeding, let’s test our macros to make sure they do what they’re
supposed to do. Open a new workbook. On the Developer ribbon, click
Macros, select the Gridlines macro, and then click Run. Repeat these steps
with the Landscape and the ColumnWidth macros. If there is a problem
running any of the macros, you’ll be redirected to the VB Editor with an error
message. Rather than trying to debug these little macros, the easiest thing to
do is delete the macro code in the VB Editor, return to your worksheet, and
re-record the macro.

You don’t have
to display the
Developer ribbon
each time you want
to turn the macro
recorder on or off.
You can flip the
switch on the macro
recorder by clicking
the Macro button on
the bottom of your
worksheet.

The Easy Way

Were you surprised
to find that you
had access to your
new macros when
you opened the
new workbook?
Remember, as long
as a workbook
containing macros
is open, those
macros are available
to all other open
workbooks. As soon
as you close the
workbook where your
macros were stored,
those macros would
no longer be available
to other workbooks.

Memo

Figure 3-4  Setting a new column width

Select All box.

Excel 2007 Macros Made Easy

44

Harvesting Macro Code
Now that we’re ready to start assembling a macro that will accomplish all that
we did in the three little macros, we’ll need to leave the friendly confines of
the workbook screen and open the VB Editor. On the Developer ribbon, click
the Visual Basic button, or press alt+f11, and the VB Editor appears.

As you recall, we stored the little macros in the current workbook. We
haven’t even given that workbook a name, and that’s all right because, when
we’re finished, there will be no need to save it or the macros associated with it.
You’ll see your workbook, and any other workbooks you might have open, listed
in the Project Explorer window of your VBA screen as shown in Figure 3-5.
If the Project Explorer window doesn’t appear, choose View | Project Explorer
in the VB Editor, or press ctrl+r.

We need to find the little macros that you created. See the workbook
you were using? It’s a VBAProject, listed in the Project Explorer window. If

you named the workbook, that name appears in
parentheses. If the workbook is unnamed, you’ll
see (Book1) or (Book2) or whatever workbook
number you were using. The macros are stored in
the module accompanying the workbook. You’ll
see the module listed in the menu beneath the
workbook title.

Double-click on the module to open the
module’s code window. Scroll through the
window and you will see that your little macros
are all there. Those macros don’t look so little,
do they? We’re going to see that there is a lot of
code material in those macros that we don’t need.
To create our new macro, we’re going to copy, or
harvest, only the code that we need.

As you scroll through the macros, you’ll see
that each one begins and ends with a Sub line. You’ll also note that there is a

Do not close
your workbook!
Your macros are
stored there!

Memo

Macros are stored
in the modules.

Figure 3-5  The Project
Explorer

� Chapter 3  Creating Macros in Visual Basic

45

horizontal line separating each macro—that makes it easy to see where one
macro ends and the next begins.

Open a New Module
We need to find a place to put our new macro. Depending on how many
macro sessions you’ve had already and how much of your previous work
you’ve saved, there might be several modules or just a couple of modules in
the VBAProject (PERSONAL.XLXB) area of the Project Explorer. Most or all
of those modules probably already have some code stored in them. You can
add to one of those modules, but just to keep things neat and clean, let’s open
a fresh new module.

Click on the title of the Personal Macro Workbook (VBAProject
(PERSONAL.XLXB)), and then choose Insert | Module from the menu. A new
module is listed under the Personal Macro Workbook, and a new, empty code
window appears.

Arrange Your Module Windows
The new window probably appears right on top of the other module code
window, the one that contains your code for the little macros. Slide the title bars
of the module’s windows around and resize the windows so that you can see
both the new Personal Macro Workbook module window and the workbook
module that contains your code from the little macros (see Figure 3-6).

Construct Your New Macro
We’re ready to start making a macro in the VB Editor, using the pieces of code
we will harvest from the three little macros that we recorded. Here are the
steps to constructing your new macro:

Enter the word 1.	 Sub followed by a name for your new macro, followed
by a set of opening and closing parentheses. I’ve decided to name my
new macro MyWorksheetSetup. Remember, there can be no spaces in
your macro name.

Excel 2007 Macros Made Easy

46

Press 2.	 enter when the first line of your macro is in place. Surprise! The
last line of your macro—End Sub—appears automatically. All of the
code you enter will be placed between these two lines of text.

Enter some comment lines beneath the title line of the macro. Begin 3.	
a comment line with an apostrophe. This way the macro program
won’t mistake your comments for macro code and try to interpret
commands from your comments. On the comment lines you can
describe your macro. As you press enter after each line of comment,
you’ll see that the comment line changes color to distinguish it from
the programming code.

Figure 3-6  The Code
windows

You can copy and
paste the title line
from an existing
macro into the new
module window, and
then overwrite the
name of the copied
macro with your new
macro name.

The Easy Way

� Chapter 3  Creating Macros in Visual Basic

47

We’re ready to place some code in this macro. Let’s start with the 4.	
code from the Gridlines macro. Notice there are three sections in
the code of the Gridlines macro. The first section begins with
With ActiveSheet.PageSetup and ends with End With.

The first ππ With...End With command contains code regarding
printing title rows and columns. This has nothing to do with
printing gridlines, and so we can ignore this code segment of the
Gridlines macro.

The next line, ππ ActiveSheet.PageSetup.PrintArea = "",
is a command regarding the print area of the worksheet. Notice
there is no command between the quotation marks. This line
of code doesn’t perform any operation and is unnecessary to the
process of printing the gridlines.

The third section of the code in the Gridlines macro contains ππ

another With...End With statement. This one contains
many lines of command. Search down to the line that says
.PrintGridlines = True. This is the command that we’re
looking for, and the command needs to be flanked by the With...
End With statements. The rest of the code just explains the default
page setup features and, since none of these features will change
(other than the Gridlines command), this code is not necessary to
the operation of this macro. Here’s the code that is significant for us:

 With ActiveSheet.PageSetup

 .PrintGridlines = True

 End With

You can copy those particular lines of code and paste them into the 5.	
new macro. Or, you can copy and paste the entire block starting with
the second With ActiveSheet.PageSetup line of code and
ending with the End With code, and then delete all the lines of code
that are not required for this macro.

You can enter as
many comment
lines as you like
in a macro—just
be sure to begin
each one with an
apostrophe. You can
enter blank lines
if you want to add
some space between
the comments and
the code.

Memo

The With...End
With construction
is a common feature
of VBA macros.
Whenever you
see a statement
beginning with With,
remember that the
whole statement
ends with the End
With line, and so the
entire collection of
information between
these two lines is
part of the same
command.

Memo

Excel 2007 Macros Made Easy

48

Figure 3-7 shows the macro so far.6.	

At this point there is enough code entered in the new macro for you 7.	
to perform a test. You have the correct macro structure in place, with
the Sub and End Sub lines, and there is a complete macro command
in the macro. You can wait until we’re finished to test the macro, or
you can to go a new worksheet and take a test drive now. If you decide
to test the new macro, open a new worksheet, click Macros on the
Developer ribbon, choose MyWorksheetSetup, and click Run. Then
click the tab for the Page Layout ribbon and you will see that the Print
Gridlines box has been checked.

We’re ready for the next piece of code in our new macro, so return to 8.	
the VB Editor if you’re not there already. Find the Landscape macro.
This time we’re looking for the code that changes the orientation from
portrait (default) to landscape. Again, we’ve got the two With...
End With sections of the macro and a stand-alone command line
regarding the print area. In the second With...End With section,
find the code for orientation:

 .Orientation = xlLandscape

Notice that the
With...End With
statements that flank
this code are identical
to the statements
that appeared in the
Gridlines macro. Guess
what this means? You
don’t have to repeat
these statements in

You also have the
option of simply
typing the lines of
code into the new
macro, but I don’t
recommend this. As
easy as typing might
sound, it’s even
easier to mistype
some of the text or
miss a punctuation
mark. Don’t take
chances with your
code. By copying and
pasting, you’ll ensure
that your code is
exactly correct.

Memo

Figure 3-7  The macro code after adding the first little macro

� Chapter 3  Creating Macros in Visual Basic

49

your new macro. You can repeat these command lines if you want to,
and add the following code to your new macro:

 With ActiveSheet.PageSetup

 .Orientation = xlLandscape

 End With

Or, you can save yourself some code lines and place the orientation
code within the existing With...End With statement, like this:

 With ActiveSheet.PageSetup

 .PrintGridlines = True

 .Orientation = xlLandscape

 End With

We’ve got one more piece to add to our macro—the command to 9.	
widen margins to 10 characters. Find the ColumnWidth macro and
look at the code that appears there:

 Cells.Select

 Selection.ColumnWidth = 10

 Range("A1").Select

The first line of code is the command to select all the cells in the
worksheet. The second line orders Excel to take the selection (all the
cells) and change the column width to 10. The final line of code moves
the cellpointer to cell A1 and selects that cell. Remember, we did this
so that the entire worksheet won’t remain selected when the macro
stops running.

These three lines of commands need to be added to your new macro.
They will follow the End With statement that already appears in your
macro. Remember you can copy and paste these command lines. The
final macro looks like this:

Sub MyWorksheetSetup()

'

' Macro contains basic setup commands including

Excel 2007 Macros Made Easy

50

' turning off the gridlines, changing to landscape

' and increasing column width to 10 characters.

'

 With ActiveSheet.PageSetup

 .PrintGridlines = True

 .Orientation = xlLandscape

 End With

 Cells.Select

 Selection.ColumnWidth = 10

 Range("A1").Select

End Sub

It’s rather amazing to look back at all of those lines of code in the little
macros we recorded and see that we only need such a small collection of code
lines to accomplish our tasks.

Test Your New Macro
It’s time to put the proverbial pedal to the metal and see how our new macro
runs. Head back to your workbook area (alt+f11 gets you there quickly), and
open a new workbook. Click the Developer tab, click Macros, and find your new
macro on the list. Click the MyWorkbookSetup macro, and then click Run.

All of the changes are now effective in your new workbook. Double-check
by opening the Page Layout ribbon and looking at the orientation and the
Print Gridlines command. Then right-click on any column letter and select
Column Width. You’ll see that the column width is now set to 10. All of your
changes should be in place. If the macro didn’t work as planned, go back
to the VB Editor, and examine the precise information that is in the macro.
It should match the example given in the preceding section. Make any
necessary changes.

Remove Old Macros
You don’t need to keep those little macros that you created in the process of
making the new macro. In fact, it’s wise to remove the macros if there’s a
chance you changed some elements (for example, cutting and pasting text

� Chapter 3  Creating Macros in Visual Basic

51

instead of copying and pasting—which would
have been fine for creating your new macro, but
which would prevent the little macro from doing
its job). The purpose of creating the little macros
was simply to provide elements of code for our
new macro. They have served their purpose and
are no longer needed.

In the VB Editor, you can very simply remove
the old macro code by highlighting the code and
deleting it.

Here’s another way to delete a macro. Return
to the workbook that contains the macros. On
the Developer tab, click the Macros button. In the
Macro Name box (see Figure 3-8), click the name
of a macro you no longer want, and then click the

Delete button. You’ll be asked if you want to
delete the macro. Click Yes (see Figure 3-9)
and the macro is removed.

Finally, you can delete unwanted macros by
simply removing the workbook that contains
the macros. If you close the workbook without
saving, everything associated with that
workbook is deleted, including its macros.

Deleting Macros from the
Personal Macro Workbook
As long as we’re on the subject of deleting macros, this is a good time to
mention that the process of deleting macros from the Personal Macro
Workbook is a bit trickier.

You can open the list of macros, as we did in the last example, and click
on a macro that is located in the Personal Macro Workbook, and then click

Select a
macro.

Click to delete the
selected macro.

Figure 3-8  Weeding out
unwanted macros

Figure 3-9  Click Yes to delete a
macro.

Excel 2007 Macros Made Easy

52

Delete, but that won’t get you too far. A message appears telling you that you
are attempting to edit a macro in a hidden workbook and you have to unhide
the workbook.

Because the Personal Macro Workbook is a hidden workbook, an extra
layer of protection is added and your macros are just a little bit safer than
they would be if they were stored in a regular workbook. You can unhide the
Personal Macro Workbook by following these steps:

Display the View ribbon.1.	

Click the Unhide button.2.	

Choose PERSONAL.3.	

Click OK.4.	

Now the workbook is unhidden and you can delete macros from the
Macros option on the Developer ribbon.

When you are finished deleting macros, be sure to re-hide the Personal
Macro Workbook. With the Personal Macro Workbook as your active window,
click the Hide button on the View ribbon and the worksheet will go back into
hiding.

Another, perhaps easier, method of deleting macros in the Personal Macro
Workbook is to go into the VB Editor and delete code. You don’t have to
unhide/hide the worksheet to make changes in the VB Editor.

When you attempt to close Excel, you will be asked if you want to save
the changes that have been made to the Personal Macro Workbook. By all
means, answer Yes! Not only will any deletion changes be saved, but all of the
macros you created during this session will be saved. Otherwise, if you close
Excel and decide not to save the changes that have been made to the Personal
Macro Workbook, it’s time to go back to the beginning of this chapter and
start over!

4
Storing Macros
Before we go much further with macro
development, we ought to get a handle on how
to save and keep track of our macros. Before you
know it, you’ll have dozens of macros and you’re
going to want to have some easy ways to find and
use the macros you’ve created.

Excel 2007 Macros Made Easy

54

If you’ve been following along in this book since the beginning, you have
created a handful of macros that are stored in the Personal Macro Workbook.
In addition, you created some macros that belonged to a particular workbook,
and then those macros disappeared when we decided not to save that
workbook. You’ve got a few different choices when deciding where to save
your macros:

Save macros to the Personal Macro Workbook. These macros are ππ

available universally to all of your workbooks.

Save macros to the active workbook that you’re using when you ππ

create the macro. These macros will always be available to any other
workbooks as long as the workbook file containing the macros is open,
and of course these macros will always be available to anyone using the
workbook in which they are contained.

Save macros to a workbook dedicated to particular macros. Creating ππ

macro workbooks enables you to organize your macros in whatever
way makes sense for you and your Excel experiences. You can open
a macro workbook whenever you want to use the particular macros
stored therein.

Deciding Where to Store Macros
Now that you know you have choices regarding where macros are to be
stored, you can start thinking about how you want to organize your macros.
Do you want to keep macros in categories, such as macros used to format
worksheets, macros that help you organize data, macros for work, macros for
hobbies, and so on? Or do you want to have certain macros available to you
for all of your Excel projects? Do you have macros that you only use when
you’re working in one particular worksheet? Answering these questions will
help you decide where you want to save your macros.

The decision of where to save a macro is made when you begin creating
the macro. If you’re recording a macro, you choose a location in the Record

� Chapter 4  Storing Macros

55

Macro dialog box. If you’re creating a macro in the VB Editor, you open a
module in the workbook where you want the macro to be stored and enter the
code in the code window associated with that module.

Save Macros in the Personal Macro Workbook
Most of the macros we’ve created so far reside in the Personal Macro
Workbook. These macros are available to you whenever you open Excel and in
every worksheet you’re using. You don’t have to search for them and you don’t
have to open any particular files in order to find them.

When you make any changes to the Personal Macro Workbook, whether
you record a new macro, edit an existing macro, create a new macro in the
VB Editor, or remove a macro entirely, you will need to save your changes.
You can save your changes from within the VB Editor. Make sure your mouse
pointer is located somewhere within the Personal Macro Workbook, either
on a code window, on one of the elements of the Personal Macro Workbook
in the Project window, or in the Properties window with an element of the
Personal Macro Workbook displayed. Then choose File | Save Personal.XLSB
from the menu (see Figure 4-1). All changes you have made during this
session will be saved. If you’re planning on spending a lengthy amount of
time performing tasks in the VB Editor, it makes sense to save your workbook
in this way frequently (not just the Personal Macro Workbook, but any
workbook where you are making changes).

Alternatively, you can close the VB Editor without saving
and nothing will be lost. Later, when you attempt to close
your Excel program, you will see a message asking if you
want to save the changes you made to the Personal Macro
Workbook. Clicking Yes saves all of your work.

Use Workbooks for Macros
Macros that relate to particular types of Excel usage might be
best stored in workbooks dedicated to that usage. Whenever
you need to do formatting, for example, you can open the Figure 4-1  Saving the Personal Macro Workbook

Excel 2007 Macros Made Easy

56

workbook containing the formatting macros. Then you go about your formatting
on other worksheets, and you’ll have access to all the macros you need.

An advantage to storing macros in separate workbooks is that they’re
portable. You can copy a file containing your macros and give that file to
someone else, and your macros will be available on that other person’s
computer. Another advantage to storing macros in individual workbooks is
that you can organize your macros by topic and avoid putting so many macros
in the Personal Macro Workbook that it’s difficult to sort through them all.

Under the new file-naming rules for Excel 2007, workbooks must be saved
as macro-enabled files in order to take advantage of the macros saved within
them. Macro-enabled files are named with an XLSM extension instead of
the normal XLSX extension that applies to typical Excel workbooks. Try to
save a workbook containing macros without specifying that you want the
XLSM file extension, and you’ll receive a message (see Figure 4-2) explaining
that by saving the workbook without making it macro-enabled, you will save
the workbook as a macro-free workbook. All macros associated with that
workbook will be lost.

When saving a macro-
enabled workbook, choose File |
Save and the Save As dialog box
appears. Enter the file name that
you want to use, and then click
the down arrow in the Save as
Type field. Choose Excel Macro-

Enabled Workbook, the file extension you need will be applied, and your
macros will be saved and available for future use.

Save Macros in the Current Workbook
Macros that are of limited use can be stored in a particular workbook.
For example, if you create a worksheet that analyzes sales data entered by
salespeople and produces reports using that data, you might write a macro
that allows you to ask the salespeople to enter the data that is required for

Figure 4-2  Clicking Yes saves
the file without macros.

� Chapter 4  Storing Macros

57

those reports and then generate the reports. That macro would be of little use
outside that particular worksheet, so it makes sense to store that macro within
the workbook.

Another example is the one we saw in Chapter 3. We created macros
exclusively for the purpose of harvesting coded material and had no need
to keep the macros beyond that limited use, so storing them in the current
worksheet made sense, and then the macros that were no longer needed were
deleted when the worksheet was closed without saving.

Using Modules in VBA
Quite simply, a module is the place where macro code resides. You can think
of the modules as extra worksheets; however, they aren’t visible unless you’re
in the Visual Basic Editor, where you can view the contents of all modules
associated with any open workbooks as well as the modules associated with
the Personal Macro Workbook.

The names of the modules can be changed in the Visual Basic Editor, so,
once you start making macros of your own, you can organize the macros
by placing them on particular module sheets and naming the sheets with
meaningful names.

Rename a module by clicking once on the module to select it, double-
clicking the module name in the Properties window, and then entering a new
name. For example, I renamed the module containing all of the Name macros
that were created in Chapter 1, NameMacros (see Figure 4-3).

Here are some of the things you can do with modules:

View the contents of any module by double-clicking on the module in ππ

the Project window.

Insert a new module by choosing Insert | Module from the menu.ππ

Copy a module from one workbook to another by dragging the module ππ

to another workbook in the Project window. The copied module will
have the same name as the original.

If the Properties
window does not
appear in the VB
Editor, choose View |
Properties Window
from the menu,
click the Properties
Window button
on the toolbar, or
press f4.

Memo

Excel 2007 Macros Made Easy

58

Making Macros
Available to Others
Previously we discussed the option of saving
macros within a workbook. When macros reside
within a workbook, you can give the workbook
to someone else, and that person will then have
access to the macros. Note that the user will have
to agree to enable the macros in order to use the
macros in the workbook.

In order to copy macros to another workbook,
you need to have both the receiving workbook and
the workbook that contains the macros open on
your computer. (If the macros are in your Personal
Macro Workbook, that workbook is already open.)
Follow these steps to copy a macro to a new
workbook.

Click the Macro Security option on the
Developer ribbon. The Trust Center window
appears (see Figure 4-4). Note which macro setting
is currently in place. Choose the option, Enable
All Macros (Not Recommended; Potentially
Dangerous Code Can Run), and then click OK.

Click the Visual Basic button or press 1.	 alt+f11
to display the VB Editor.

In the Project Explorer window, find the 2.	
module(s) containing the macro(s) you want
to copy.

Drag the module(s) to the receiving workbook.3.	

New name
appears here.

Change
module

name here.

Figure 4-3  Renaming modules

� Chapter 4  Storing Macros

59

Press 4.	 alt+f11 to return to the worksheets.

Open the Trust Center again (see step 1) and return to the macro 5.	
setting that was in place previously, then click OK.

Save the workbook into which you copied the macros with an XLSM 6.	
file extension.

Protecting Your Macros
There are several reasons why you might want to safeguard your macros.
Here are the reasons I came up with—you probably have some more:

You worked hard to create your macro—you don’t want anyone else ππ

changing it or, worse, futzing with the code so that it doesn’t work
any more.

The information in your macros is private—you don’t want other users ππ

learning the secrets behind how your macros operate.

Change
macro

settings.

Figure 4-4  Enabling macros

Excel 2007 Macros Made Easy

60

You have three choices for how you protect your macros:

You can make the VBA macros completely inaccessible to everyone 1.	
but yourself.

You can make the macros visible but not changeable to anyone who 2.	
knows the password that protects them.

You can allow only people who know your password the right to 3.	
change your VBA code.

The protection choice is made within VB Editor. Here are the steps to
follow:

Click on the project name in the Project window.1.	

Right-click and choose VBAProject Properties (this command is also 2.	
available on the Tools menu).

Click the Protection tab in the Project 3.	
Properties window that appears, as shown in
Figure 4-5.

Check Lock Project for Viewing if you want 4.	
to apply a complete lockdown of your VBA
macros. No one will be able to edit or even see
your macros unless they possess the correct
password. Enter the password in the fields
provided, then click OK.

Alternatively, leave the check box unchecked, 5.	
but enter a password in the fields provided, if
you want to make your VBA macros available
for someone who knows the password to
view only.

Click OK to save your entries.6.	Figure 4-5  Protecting macros

Check here to restrict
viewing and editing
VBA code.

Enter the
password twice.

� Chapter 4  Storing Macros

61

Assigning Shortcut Keys to Macros
Macros that you only use occasionally probably don’t need any special shortcut
features. It’s easy enough to click the Macros button on the Developer toolbar,
view the available macros, click on the one you want, and then click the Run
button to execute the macro. That’s only three clicks, or four if you have to
click the Developer tab—do you need to save more time than that?

Well, apparently the answer is yes, so Excel has an option whereby you can
assign your macros to keyboard shortcuts. Once you’ve assigned the shortcut
key combination, you can press the combination on your keyboard and
the macro runs, bypassing the Macros menu altogether. That’s pretty slick,
especially if you prefer using the keyboard to mousing around, but of course the
trick is that you have to remember the shortcut that you assigned to the macro!

There are three ways to assign a shortcut key to a macro:

Recording macrosππ   Enter the key combination in the Record Macro
box. As Figure 4-6 shows, there is a field for Shortcut Key, and the field’s
label indicates that whatever you enter, your shortcut will include the
ctrl key. You can enter a letter or a number in the Shortcut Key box.

Watch out! Many
keyboard shortcuts
already exist in Excel.
If you choose to
utilize an existing
keyboard shortcut as
your macro shortcut
(such as ctrl+b,
which is used to turn
on the Bold feature),
Excel will take you at
your word and change
the default shortcut
to your macro. The
shortcut will no
longer work for the
default command.
See the list in the next
Briefing for existing
Excel keyboard
shortcuts.

Memo

Figure 4-6  Assign keyboard shortcuts when you
name your macro.

Excel 2007 Macros Made Easy

62

You also have the option of pressing the shift key while entering
your letter or number, and then the macro shortcut will be
ctrl+shift+whatever key you enter. You can only use one number or
letter for your macro shortcuts (or one character, if you’re using the
shift with the number keys).

Editing macrosππ   Change the keyboard shortcut associated with a
macro by first clicking the Macros button on the Developer ribbon.
Find the macro whose shortcut you want to change and click once
on that macro. Click the Options button. The Macro Options dialog
box (see Figure 4-7) appears, displaying the name of the macro, the
shortcut key (if any) associated with that macro, and the Description
field. In this dialog box, you can change a shortcut key, remove an
existing shortcut key, or add a key where none previously existed.
Click OK to save your entries.

Creating new VBA macrosππ   When you create a new VBA macro using
the VB Editor, there is not an opportunity to assign a keyboard shortcut
to the macro. Instead, return to step 2 above—use the Macro Options
feature to assign a shortcut to a new macro.

Figure 4-7  Enter, edit, or delete keyboard
shortcut.

In the VB Editor
we have seen that
if you assigned a
keyboard shortcut
when you recorded a
macro, that keyboard
shortcut appears
in the comment
section at the top
of the macro, right
beneath the macro
name. You cannot
edit the keyboard
shortcut information
that appears in the
VB Editor and expect
the keyboard shortcut
to change. This
information appears
as a comment, not
a command, so any
changes you make
to the comment will
not alter the shortcut
command.

Memo

Remember! Keyboard
shortcuts always start
with ctrl and contain
only one character—a
lowercase letter or a
number. You have the
option of including
the shift key after the
ctrl if you want to use
a capital letter or a
character.

Memo

� Chapter 4  Storing Macros

63

ctrl+shift+(Unhides any hidden rows within the selection.

ctrl+shift+) Unhides any hidden columns within the selection.

ctrl+shift+& Applies the outline border to the selected cells.

ctrl+shift_ Removes the outline border from the selected cells.

ctrl+shift+~ Applies the General number format.

ctrl+shift+$ Applies the Currency format with two decimal places (negative numbers in
parentheses).

ctrl+shift+% Applies the Percentage format with no decimal places.

ctrl+shift+^ Applies the Exponential number format with two decimal places.

ctrl+shift+# Applies the Date format with the day, month, and year.

ctrl+shift+@ Applies the Time format with the hour and minute, and am or pm.

ctrl+shift+! Applies the Number format with two decimal places, thousands separator,
and minus sign (–) for negative values.

ctrl+shift+* Selects the current region around the active cell (the data area enclosed by
blank rows and blank columns).
In a PivotTable, it selects the entire PivotTable report.

ctrl+shift+: Enters the current time.

ctrl+shift+” Copies the value from the cell above the active cell into the cell or the
Formula bar.

ctrl+shift+plus (+) Displays the Insert dialog box to insert blank cells.

ctrl+minus (–) Displays the Delete dialog box to delete the selected cells.

ctrl+; Enters the current date.

ctrl+` Alternates between displaying cell values and displaying formulas in the
worksheet.

ctrl+’ Copies a formula from the cell above the active cell into the cell or the
Formula bar.

ctrl+1 Displays the Format Cells dialog box.

ctrl+2 Applies or removes bold formatting.

Existing Excel Keyboard Shortcuts

Excel 2007 Macros Made Easy

64

ctrl+3 Applies or removes italic formatting.

ctrl+4 Applies or removes underlining.

ctrl+5 Applies or removes strikethrough.

ctrl+6 Alternates between hiding objects, displaying objects, and displaying
placeholders for objects.

ctrl+8 Displays or hides the outline symbols.

ctrl+9 Hides the selected rows.

ctrl+0 Hides the selected columns.

ctrl+a Selects the entire worksheet.
If the worksheet contains data, ctrl+a selects the current region. Pressing
ctrl+a a second time selects the current region and its summary rows.
Pressing ctrl+a a third time selects the entire worksheet.
When the insertion point is to the right of a function name in a formula,
displays the Function Arguments dialog box.
ctrl+shift+a inserts the argument names and parentheses when the
insertion point is to the right of a function name in a formula.

ctrl+b Applies or removes bold formatting.

ctrl+c Copies the selected cells.
ctrl+c followed by another ctrl+c displays the clipboard.

ctrl+d Uses the Fill Down command to copy the contents and format of the
topmost cell of a selected range into the cells below.

ctrl+f Displays the Find and Replace dialog box, with the Find tab selected.
shift+f5 also displays this tab, while shift+f4 repeats the last Find action.
ctrl+shift+f opens the Format Cells dialog box with the Font tab selected.

ctrl+g Displays the Go To dialog box.
f5 also displays this dialog box.

ctrl+h Displays the Find and Replace dialog box, with the Replace tab selected.

Existing Excel Keyboard Shortcuts (cont.)

� Chapter 4  Storing Macros

65

ctrl+i Applies or removes italic formatting.

ctrl+k Displays the Insert Hyperlink dialog box for new hyperlinks or the Edit
Hyperlink dialog box for selected existing hyperlinks.

ctrl+n Creates a new, blank workbook.

ctrl+o Displays the Open dialog box to open or find a file.
ctrl+shift+o selects all cells that contain comments.

ctrl+p Displays the Print dialog box.
ctrl+shift+p opens the Format Cells dialog box with the Font tab selected.

ctrl+r Uses the Fill Right command to copy the contents and format of the
leftmost cell of a selected range into the cells to the right.

ctrl+s Saves the active file with its current file name, location, and file format.

ctrl+t Displays the Create Table dialog box.

ctrl+u Applies or removes underlining.
ctrl+shift+u switches between expanding and collapsing of the Formula bar.

ctrl+v Inserts the contents of the clipboard at the insertion point and replaces any
selection. Available only after you have cut or copied an object, text, or cell
contents.

ctrl+w Closes the selected workbook window.

ctrl+x Cuts the selected cells.

ctrl+y Repeats the last command or action, if possible.

ctrl+z Uses the Undo command to reverse the last command or to delete the last
entry that you typed.
ctrl+shift+z uses the Undo or Redo command to reverse or restore the last
automatic correction when AutoCorrect Smart Tags are displayed.

Existing Excel Keyboard Shortcuts (cont.)

Excel 2007 Macros Made Easy

66

Assigning Macros to the Toolbar
As you know, the old concept of customizable toolbars from earlier versions
of Excel no longer exists in Excel 2007. The toolbars with their changeable
buttons and the menus with their changeable commands are a thing of
the past. Well, almost. There is one area of the Excel command central where
you still have some flexibility, and that is the little Quick Access toolbar
at the very top of the Excel screen (see Figure 4-8). You don’t have total

flexibility with this
toolbar, but you do have
more freedom than you
do with the ribbons.

Add Common Commands to the Toolbar
Customize the Quick Access toolbar by clicking the arrow on the right side
of the toolbar. You will see a short menu of some of the most familiar Excel
commands, including New, Open, Save, Quick Print, and so on, as shown
in Figure 4-9. Commands with a checkmark already appear on your toolbar,
Click on any of the unchecked commands to add them to the toolbar.

Click here to display menu.

Figure 4-8  Excel’s Quick
Access toolbar

Figure 4-9  Customizing the
Quick Access toolbar

Check items to
display on the
menu.

Click here to
access additional
commands.

� Chapter 4  Storing Macros

67

Add Additional Commands to the Toolbar
Customize further by choosing the More Commands option that appears on the
Customize menu. In the Excel Options window that appears (see Figure 4-10),

Click here to display the toolbar commands. Choosing View Macros places the Macros button on your toolbar.

Click to add a button to the toolbar. Click to save your changes.

Figure 4-10  Choosing buttons to add to the toolbar

Excel 2007 Macros Made Easy

68

click on any command listed on the left side of the window, and then click
Add to add the command to the toolbar. One of the commands in the
command list is View Macros. Adding this command to the Quick Access
toolbar gives you the ability to display the Macros window at any time. Once
you’ve added this command to the toolbar, you save yourself the trouble (if
you can call one click trouble) of opening the Developer ribbon before you can
display the Macros window.

But wait! There’s more! At the top of the list, there is a drop-down menu
called Choose Commands From (see Figure 4-10). Click the arrow to display
this menu of commands (see Figure 4-11) and you’ll see that not only do you

Figure 4-11  Displaying your
macros

Choose Macros
to display all your
macros in the
Command list.

� Chapter 4  Storing Macros

69

have access to all Excel commands, any of which can be added to your Quick
Access toolbar, but you can click the Macros option and all the macros that
reside in your Personal Macro Workbook are displayed in the command list.
Choose any macro by clicking on it, then click Add, and you have added the
macro to the list of button commands you want to display on your toolbar.

Add Macros to the Toolbar
But wait! There’s still more! (I sound like an infomercial, don’t I? I’m about
to throw in a set of Ginzu knives at no extra charge!). If you add more than
one macro to your Quick Access toolbar, you’ll see quickly enough that all
macros look alike. They all have the same design for their button. This won’t
do! You won’t be able to tell them apart! Of course, you can leave the button
appearance as is and click OK. When the macro buttons appear on your
toolbar, they look alike, but you can place your mouse over the button and
you’ll see a descriptive balloon telling you the name of the macro.

Another option is to change the appearance of the buttons. Back in the
Customize window, click once on any command that appears in your list on the
right side of the window—in this case you’ll want to click on one of the macros
you’ve added to the toolbar. Then click the Modify button at the bottom of the
list. The Modify Button window appears, as shown in Figure 4-12, displaying
nearly 200 button designs from which you can choose. Furthermore, in the
Display Name field, you can change the name from something boring, like
“PERSONAL.XLSB!FormulaToValue,” to “Change formulas to values.” Click
OK to close the window after you’ve made your selections.

Customize Your Toolbar
for a Particular Workbook
One more thing, before you leave the Excel Options window. Above the list
on the right, there is a Customize Quick Access Toolbar drop-down list. By
default, any changes you make in this window affect the Quick Access toolbar
for all of Excel. But, if you like, you can choose the other option, For Book1,

You’ve seen this
Excel Options
window before!
When you click
the round Excel
Office button at the
top of the screen,
the Excel Options
window appears.
Click Customize
on the left side
of the window to
access the toolbar
customization
information.

The Easy Way

Excel 2007 Macros Made Easy

70

where Book1 is the name of your current workbook. You can actually create
a Quick Access toolbar that belongs exclusively to one workbook. This is a
powerful feature for times when you create macros that belong to just one
workbook. Make all the macros easily accessible on the Quick Access toolbar
for just that workbook.

Finally, click OK to save your changes. Now you can take a look at your
new toolbar, completely customized to make your Excel experiences easier
(Figure 4-13).

Click a macro.

Click an image
for this macro
button.

Enter a
descriptive
name.

Figure 4-12  Customizing the
button for a specific macro

� Chapter 4  Storing Macros

71

Figure 4-13  The customized toolbar

Customized Quick
Access Toolbar

This page intentionally left blank

5
Understanding
Macro Commands
In this chapter you’ll see how to write macros
rather than simply record them. Recording is an
excellent approach, but some things are either
easier to do by hand, or just can’t be recorded at
all. For example, you can display messages to the
user on the Excel status bar, as illustrated by an
example in Chapter 7. But there is no way to record
this action; it must be programmed by hand, by
writing code.

And recall that there’s also a very common third
approach to creating macros: You first record and
then use the Editor to modify what you’ve recorded.

This chapter concludes with an overview of the
most commonly used Visual Basic commands,
as well as the VB Editor’s most important basic
features.

Excel 2007 Macros Made Easy

74

Writing Your First Macro
Start Excel running and then press alt+f11. You now see the VB Editor, as
shown in Figure 5-1.

By default three primary windows are displayed in the VB Editor. On the
top left is the Project Explorer, which displays the current workbook as well

Project Explorer

Properties window

Code window

Figure 5-1  The VB Editor, showing the Project Explorer, Properties window, and code window

� Chapter 5  Understanding Macro Commands

75

as all the worksheets it contains. Below this is the Properties window, where
the various properties of the currently selected object (in this case Sheet1) are
displayed. You can also use this window to edit the properties displayed. For
example, you could click on the Name property and change it from Sheet1
to Overview or whatever you wish. When you press enter, the name changes

both in the Properties window and on the Excel workbook.
Note that this is not the same as the (Name) property at
the top of the Properties window, which is used internally
within the VB Editor. The main point is that the Properties
window gives you a convenient way to edit the properties
of objects. This window is most useful when creating
custom user-interaction windows called UserForms (this
topic is covered in Chapter 7).

It’s in the code window that you write your macros. You
can double-click any sheet or ThisWorkbook in the Project
Explorer to open a sheet’s code window or the current
workbook’s code window. The window turns from gray
to white, signifying that you can now type programming
commands into it.

Excel allows you to store macros in any worksheet,
in the current workbook (ThisWorkbook in the Project
Explorer), or in modules. (Modules are convenient
containers where you can put macros that you want
to be accessible from any other location in a project.)
In addition, if you write or record a really useful
macro that you want to have available always—
there’s a way to store macros for use with any Excel
workbook you open, now or in the future. To make
a macro available everywhere and always, record it
or write it in the special Personal Macro Workbook.

Each time Excel starts, it loads this special workbook
(it’s the equivalent of Microsoft Office Word 2007’s
Normal.dotm file). Recall that when you click the
Record Macro button in Excel, a dialog box opens.
In Figure 5-2, you can see in the Store Macro In list
box that one option is to store this recorded macro
in the global Personal Macro Workbook. Choosing
this option adds this workbook and its macros to
the Project Explorer. So recording is a quick way to
be able to also write macros in the Personal Macro
Workbook.

Where to Store Your Macros

Figure 5-2  Opening the
global Personal Macro
Workbook in the Project
Explorer

Excel 2007 Macros Made Easy

76

Go ahead and add a module now: Choose Insert | Module. Module1 is now
added to the Project Explorer, and its code window becomes available to you
for programming. Now you can type a macro into the code window, press f5
to test it, and, if necessary, make some modifications so it works just the way
you want it to work.

Let’s imagine that for your first handcrafted macro, you want to create
a vertical label rather than the typical column head. You have a range
of numbers, as shown in Figure 5-3, and you want to describe them by
displaying a label to their left. You can see an example in Figure 5-4.

Recording macros is a
great way to have VBA
create code for you.
But another shortcut
is to look at the VB
Editor’s Help system
to find code examples.
You might not need to
work from scratch if
you can find example
code that does what
you’re after, or at least
something similar.
Just copy the code
from the Help screen,
paste it into a code
window in the Editor,
and then modify it as
needed.

Memo

Figure 5-3  You want to
create a macro that rotates
these labels so they’re vertical.

� Chapter 5  Understanding Macro Commands

77

In Module1 in the VB Editor, type this macro:

Sub Rotate()

 With Selection

 .MergeCells = True

 .VerticalAlignment = xlCenter

 .Orientation = 90

 .Font.Size = 24

 End With

End Sub

Figure 5-4  This is how you
want the sheet to look after
your macro executes.

Excel 2007 Macros Made Easy

78

Now test it by dragging your mouse to select cells A10 up to A1. Note that
this includes, in cell A1, the title June Scores, as shown in Figure 5-3.

With the range selected, switch back to the Editor: Press alt+f11, click
anywhere in your macro, and then press f5 to execute it. You should see the
result shown in Figure 5-4.

Understanding the Code
In this macro you don’t hard-wire (specify in the code) the cells you want to
rotate. Instead, you allow the user to select the range, and then you use the
With Selection command. This approach is obviously more flexible than
a hard-wired range—but of course it demands that the user take extra steps.

The With structure—between the With Selection and End With
commands—is handy if you want to make several changes at once to a range
or other object. You don’t have to repeatedly type the target (Selection in
this case), like this:

 Selection.MergeCells = True

 Selection.VerticalAlignment = xlCenter

 Selection.Orientation = 90

 Selection.Font.Size = 24

Instead of this redundancy, you put the whole set of changes into a With
structure. With structures also improve the readability of your code because
you can see that the list of properties all belong to the same object.

Notice, too, that I’ve only included the necessary properties in this code:
MergeCells, VerticalAlignment, Orientation, and Font.Size.
It’s not necessary to specify additional properties—such as the FontStyle
or Underline—because I’m not changing the font or adding underlining to
this text.

Paring Code
The macro in the preceding example could have been recorded rather than
written by hand. Let’s try that approach to see what happens. When a macro

� Chapter 5  Understanding Macro Commands

79

is recorded, all the properties of the object are recorded, not just those that are
actually needed for the modification under way. This means that even if you’re
merely changing the orientation, the underline property and many other
properties are also included in the recorded macro.

Let’s see how this works, and how to fix it. Follow these steps:

Select a cell with some text in it.1.	

Click the Developer tab on the Ribbon, and then click the Record 2.	
Macro icon to start the recording process.

Right-click that cell and choose Format Cells from the context menu.3.	

In the Format Cells dialog box that opens, click the Alignment tab.4.	

Drag the Orientation line up to 90 degrees, straight up (or adjust the 5.	
setting in the Degrees text box).

Click OK to close the dialog box.6.	

Click the Stop Recording icon in the code section of the Ribbon 7.	
(the Developer tab must be selected).

Press 8.	 alt+f11, then open the recorded macro in the VB Editor. You
should see code like this:

With Selection

 .HorizontalAlignment = xlGeneral

 .VerticalAlignment = xlBottom

 .WrapText = False

 .Orientation = 90

 .AddIndent = False

 .IndentLevel = 0

 .ShrinkToFit = False

 .ReadingOrder = xlContext

 .MergeCells = False

 End With

Excel 2007 Macros Made Easy

80

All but one of these properties didn’t change—the only property you
changed while recording is the Orientation. Nevertheless, the recorder
took this snapshot of all possible properties.

Many programmers will edit this recorded macro. They’ll strip out all
but the meaningful properties, the one that changed in this example. This
paring out of the unchanged properties makes it easier, later on, to see what
this macro is actually doing. And paring also prevents you from accidentally
changing important cell properties. The only necessary property change is the
orientation, so you can delete all the other lines:

With Selection

 .Orientation = 90

End With

In our earlier example—showing how to write a macro by hand—we
also included some additional property modifications: merging the selected
cells, centering the text, and increasing the font size. But you’ll recall that
indentation, text wrapping, and other properties were left out. They just were
not needed, even though the recorder always includes them.

The Elements of Visual Basic
Basic has been around for decades, and for several decades it was the most
popular programming language of all. It remains the easiest to use, even
though now academic and professional programmers have largely abandoned
it in favor of C and its offspring languages.

Why is Basic the easiest? Because its explicit goal is to be as English-like as
possible in its diction and syntax. In other words, to end execution of a Basic
macro, you use the command End. To conclude a With structure, you use the
command End With, and so on. To compare two years’ worth of taxes, you
use a highly readable Basic “sentence” like this:

If TodaysTaxes = LastYearsTaxes Then GoTo NoChange

� Chapter 5  Understanding Macro Commands

81

Basic, when possible, tries to use English words and English-like
sentences. What could be more sensible or understandable?

Commonly Used Commands
Let’s take a look at some
of the most commonly
used Basic commands,
including code examples
illustrating how you can
employ these commands
in your own Excel
programming. This
overview is by no means
exhaustive, but it will introduce you to some important programming concepts,
and give you a feel for some of the things you can do by hand-coding macros.

Several important commands are covered elsewhere in this book: message
boxes in Chapter 7, variables in Chapter 9, If...Then decision-making code
in Chapter 10, and For...Next looping in Chapter 11. However, what follows
in this chapter is a survey of a variety of additional useful VBA commands you
should know about, including several sets of commands grouped into categories
such as text manipulation, financial calculations, and managing dates and times.

Manipulating Text
When working with text in macros, you are likely to find the set of text
manipulation commands quite useful.

For example,
sometimes you need to
search for a piece of text.
Let’s say that you ask the
user to type their e-mail address into an input box (described in Chapter 7).
One way to make sure they actually entered a proper e-mail address is to search
through the string for the @ symbol, which all e-mail addresses have.

Remember, if you need to accomplish some task
not described here, your first step should be to

press f1 to open the VB Editor’s Help feature. For example,
if you want to allow the user to view the file open dialog box
that’s built into Excel, search VBA Help for something like file
access. One of the displayed topics is FileDialog Property, and
it contains an excellent code example you can paste into your
macro. If you can’t find something in the built-in Help, choose
Help | MSDN on the Web, and search there.

Link

Press f1, then search VBA Help for String
Manipulation Keyword Summary.Link

Excel 2007 Macros Made Easy

82

To search a string for a substring, you use the InStr command, like this:

Sub EnterEmail()

 strEmailAddr = InputBox("Please type in your e-mail address")

 test = InStr(strEmailAddr, "@")

 If test = 0 Then

 strEmailAddr = InputBox("Please try again--you did not include

an @ symbol in your e-mail address")

 End If

End Sub

When you run this macro, the InStr command puts a zero in the variable
test if no @ symbol was found in the text the user typed into the input box
(this text is stored in the variable strEmailAddr). So, we can test this by
this line of code, and respond with a second request for the address if we find
a zero:

If test = 0 Then

You can probably imagine many situations in programming where it
would be useful to parse through a sentence or paragraph to see if a particular
word or phrase can be found within that block of text.

VBA includes a large group of text manipulation commands, including the
following:

The ππ Mid command is similar to InStr, except that Mid returns a
substring when you provide the starting position and length of the
substring you’re after. For example:

MsgBox Mid("HellenChange", 2, 5)

Results in: ellen.

Get it?

� Chapter 5  Understanding Macro Commands

83

The ππ Replace command is also related to InStr, except Replace
removes a target string and inserts another string in its place, like this:

MsgBox Replace("HellenChange", "Hellen", "Dora")

Results in: DoraChange

The ππ Left command extracts a substring (there’s a Right command
as well):

MsgBox Left ("Miss Petunia", 4)

Results in: Miss

LCase changes all the characters to lowercase (there’s a UCase too):

MsgBox LCase("HellenChange")

Results in: hellenchange

The ππ Format command has many variations (arguments), and it
allows you great freedom in how to display text, dates, financial results,
and so on. Press f1 and search Help for String Manipulation Keyword

Summary.

Len tells you the number of characters (the length of a string):

MsgBox Len("HellenChange")

Results in: 12

Dates and Times
When you need to employ time or calendar information in a macro, VBA
offers you a set of useful commands. Here are some examples:

Sub DatesTimes()

 MsgBox Now

 MsgBox Date

 MsgBox Time

 MsgBox Day(Now)

 MsgBox Month(Now)

Excel 2007 Macros Made Easy

84

 MsgBox Hour(Now)

 MsgBox Minute(Now)

End Sub

If you run this macro, you’ll see a series of
time/date data displayed.

VBA even has some commands that perform
calculations on time for you, such as the
DateDiff command, which tells you how many

days between today and some future date, like this:

Sub DateDifference()

FutureDate = "12/12/2012"

MsgBox "Days from today: " & DateDiff("d", Now, FutureDate)

End Sub

Math
All the usual, and some unusual, math operations are available in VBA.
You’ve got + for addition, and – for subtraction, and * for multiplication. The
division symbol is a slash (/):

MsgBox 5 / 4

Results in: 1.25
However, just for good measure, there’s another form of division using the
backslash (\), called integer division. All this does is lop off any decimal point
in the answer:

MsgBox 5 \ 4

Results in: 1
If you ever find a use for that, let me know. Notice that this doesn’t round

the number off; it lops. For example 5 \ 3 also results in 1, although if rounded
it would be 2. If you really want to round, use the Round command, and

Notice that the
MsgBox command
doesn’t require that
you use parentheses:

  MsgBox Date

works just as well as

  MsgBox (Date)

However, if you’re
providing an argu-
ment list (see the
briefing in Chapter 7)
to a command, you
must use parenthe-
ses, like this Now
argument provided to
the Hour command:

  Hour (Now)

Memo

To see the various date and time commands in VBA,
press f1, and then search for Dates and Times Keyword

Summary.

Link

� Chapter 5  Understanding Macro Commands

85

specify the number of decimal places you’re after. Here we want three decimal
places:

MsgBox Round(5 / 3, 3)

Results in: 1.667
Beyond these operators, you’ll also find quite a few math functions (search

Help for Math Functions).
And for all those times when you have to calculate an inverse hyperbolic

secant, don’t worry, it’s there.

Financial Calculations
VBA includes a set of commands that provide some of the features of a
financial calculator. Accountants and others involved in the mathematics of
business can use these commands to build financial calculating tools. And
because macros are extremely flexible, you can customize your calculations
far more than is possible with even the most expensive calculators.

Here’s an example showing how to figure out the total amount of interest
you’ll be paying for your home mortgage over the life of the loan. You
provide the following
information to the
macro: interestrate,
paymentrange,
totalperiods,
presentvalue,
futurevalue, whendue. Then the IPmt command can give you back the
total interest that will be paid over the life of that loan.

Here’s how it works: The interestrate is the interest rate of your
loan and should be expressed as the rate per month because you pay monthly.
Because you’ll probably know the interest in terms of an annual rate, divide
by 12. Our rate is 6 percent, so the rate figure should be .06 (the interest rate) /
12 (the months in a year). The resulting rate is .005. We’ll use the name
irate for interest rate variable in this command because VBA already has

As with the date commands, you’ll also find a gen-
erous set of financial commands in VBA. Press f1

and search for Financial Keyword Summary. (The word keyword
is sometimes used as a synonym for the word command.)

Link

Excel 2007 Macros Made Easy

86

a command called Rate (described later in this section). As you’ll see in
Chapter 9, you can’t name a variable using a word that VBA already uses for
one of its built-in commands.

The paymentrange is how much of the total time of the loan you want to
figure the interest for. We’ll use a For...Next loop for this calculation, so
the paymentrange variable will change dynamically when we’re calculating,
moving us through the entire life of the loan.

The totalperiods is the number of times you pay the mortgage over
the life of the loan. Ours is a 15-year mortgage, and we pay monthly. So the
totalperiods is 15 * 12 (which results in 180).

The presentvalue means the total amount you’re borrowing. Our
house cost $50,000 (it’s a total fixer-upper), but you should express this
number as a negative, so it’s –50000.

The futurevalue is the cash balance you want to have at the end of the
mortgage. For loans, futurevalue is zero.

The whendue value is either 1 or 0. It’s 1 if payments are due at the
beginning of each month; it’s 0 if payments are due at the end of each month.
We pay at the end, so whendue is 0.

Now that we’ve answered these questions, we can use the following macro
to calculate the interest:

Private Sub Interest()

irate = 0.005

totalperiods = 180

presentvalue = -50000

futurevalue = 0

whendue = 0

For paymentrange = 1 To totalperiods

Tempinterest = IPmt(irate, paymentrange, totalperiods,

presentvalue, futurevalue, hendue)

Totalinterest = Totalinterest + Tempinterest

Next paymentrange

MsgBox "The total that you’ll pay for this loan is: " &

Format(Totalinterest + Abs(presentvalue), "###,###,##0.00")

� Chapter 5  Understanding Macro Commands

87

MsgBox "Of that, the interest is: " & Format(Totalinterest,

"###,###,##0.00")

End Sub

When you execute this macro, it tells you that the total that you’ll pay for
this loan is $75,947.11. And of that, $25,947.11 is interest.

Don’t be alarmed by this code. The Format command, for example, is easy
to understand when you look it up in VBA Help. Just click the word Format
in your macro code to put the blinking insertion cursor in it, then press f1 and
you’ll see many dozens of examples of its use.

As for understanding how to employ the various financial commands in
VBA, you’ll find plenty of code examples for them as well.

Error
You sometimes want to put an error handler in your macros. This way, if
something goes wrong, your macro doesn’t just mysteriously stop executing,
or otherwise frighten the user. Instead, you can display a message explaining
what happened and what the user can do about it.

Here is a typical error-handling structure. First, you tell VBA where to
go—a place in the macro where you’ve put the label Showit—if an error
occurs:

On Error GoTo Showit

You can use any name you want instead of Showit; it’s just a target where
the macro starts executing code if an error happens.

Next, we have a line that induces a fake error (Error 70) just so we can
test the error handler. This line would be replaced by the actual code in your
macro.

Typically an Exit Sub command appears just above any error handler
code. This prevents the program from reaching the handler unless an error
actually sends us to the handler.

Excel 2007 Macros Made Easy

88

Then the Showit section prints the error message, in this case Permission

Denied (because we induced error #70). Finally, the VB command Resume
Next is used to send VB back up to the line following the On Error GoTo:

Sub Errors ()

On Error GoTo Showit

Error 70

Exit Sub

Showit:

 MsgBox Error(Err)

 Resume Next

End Sub

This code displays the error description in a message box to the user.
However, before you finish your macro and give it to others, you’ll probably
want to replace that built-in message with a more helpful, more descriptive
message of your own, such as:

MsgBox ("See the network administrator. You don’t have

security clearance to do this.")

Developed during decades of user feedback, focus
groups, and refinement, the VB Editor is a polished
gem. No matter how many years you spend, or how
deeply you go into VBA programming, I doubt you’ll
ever find yourself wishing for a particular feature. It’s
filled with everything a programmer needs.

Beginners, however, can get a head start by
knowing about several important features in advance.
No point stumbling on them. I’ll just tell you the
essentials in this briefing.

The File and Edit Menus
The File and Edit menus contain most of the usual
tools you’d find in a word processor. And any
programmer’s editor is a word processor, albeit highly
specialized. The Edit menu includes the usual find, cut,
copy, paste, and other text manipulation capabilities,
but it also has options specific to programming. Click
your mouse on a command such as MsgBox in the
code editor, to select it, and then try choosing Edit |
Quick to see the syntax for this command.

Getting Acquainted with the VB Editor

� Chapter 5  Understanding Macro Commands

89

The View Menu
On the View menu you can choose to display the
important Project Explorer or Properties window, if
you’ve previously closed them. You can also display
the Toolbox if you’re working on a UserForm (see
Chapter 7).

The Format Menu
The Format menu contains a variety of options, most
useful when prettying up a UserForm.

The Debug Menu
On the Debug menu, you’ll find all kinds of useful
features that can help you track down elusive errors
in your code.

The Run Menu
On the Run menu, the most useful option here for
beginners is the Run | Reset option. Click that if you
ever see the message shown in the illustration.

Beginners are baffled by this error message.
It’s displayed when you run a macro that has an

error in it, and the VB Editor automatically enters
“break mode,” a special condition where execution
of the macro is stopped. However, something else
happens too: Further execution of that macro or
any other macro is now not possible in this mode
(programmers use a variety of the tools on the Debug
menu during break mode). But you’ll often want to
get out of this break mode and back to normal. To
exit from break mode, choose Run | Reset.

That’s it. I’ve not covered every option, or, indeed,
every menu. Some are self-explanatory, like the
Window | Cascade option. If you don’t know what this
means in a word processor, try it and see.

Getting Acquainted with the VB Editor (cont.)

This page intentionally left blank

6
Using Visual Basic
Subroutines
and Creating
Functions
A subroutine is like a little macro that operates
within a larger macro. The subroutine code resides
within the main macro. When a macro calls a
subroutine, the execution of the macro is diverted
to the subroutine area of the macro.

One common use for subroutines is to break
up a complex macro into smaller parts. Also,
subroutines can be useful in macros that provide
the user with a choice. If you select choice A, the
macro diverts to the A subroutine. Select choice
B and the B subroutine is called into action. For
example, let’s say you have defined two print areas
on the screen. The macro asks the user to indicate
which print area should be printed. Choosing print
area 1 causes the macro to divert to the Print1
subroutine. Choosing print area 2 causes the macro
to divert to the Print2 subroutine. In this scenario,
when the print job has been completed or has
been canceled, macro execution ends. Choosing a
third option, Cancel, causes the macro to proceed
without printing, or, in this case, to end.

Excel 2007 Macros Made Easy

92

Alternatively, if a function within your macro produces one set of results,
one subroutine runs; another set of results causes a different subroutine
to run. For example, the macro examines a cell containing a number. If the
number is less than 1,000, the cell is rounded up to 1,000. If the number is
greater than 1,000, there is no change to the cell contents.

Creating a Subroutine
Because a subroutine runs within an existing macro, there needs to be a
way to set the subroutine commands apart from the rest of the macro. This
is done by assigning a name to the subroutine. The macro then calls the
subroutine by its name with the GoTo command. The subroutine itself
begins with its name as the first line, followed by the command lines
associated with that subroutine, and the subroutine ends with an End
command. Alternatively, you can call the subroutine with the GoSub
command. When you use GoSub, operation returns to the jump-off point in
the macro when the subroutine is finished.

Here’s an example. Say you’ve designated two areas of your worksheet
as different print areas, and you’ve assigned range names to these areas,
PrintArea1 and PrintArea2. You want to create a macro that asks the user if
he wants to print what he knows as Report 1 (which equates to PrintArea1)
or Report 2 (which equates to PrintArea2). His answer is stored in the macro
as 1 or 2. If he answers 1, the macro executes a subroutine called Print1. If he
answers 2, the macro executes a subroutine called Print2. If the user answers
something other than 1 or 2, the question appears again and he has another
chance to answer. The question itself is treated as a subroutine as well, so that
it can be recalled if necessary.

Naming a Subroutine
Designate the name of a subroutine by entering the name you want, followed
by a colon. Use only one word for the subroutine name. For this example, the
three subroutines will be called:

� Chapter 6  Using Visual Basic Subroutines and Creating Functions

93

Answer:
Print1:
Print2:

These names are referred to as labels.

Calling the Subroutines
The first subroutine required for this macro performs the task of asking the
user a question. This code is quite simple—it utilizes the concept of an input
box with a field available for the user to enter his answer. Input boxes are
discussed in more detail in Chapter 7. For now, we’ll just use the InputBox
code with just a minimal description. The code begins with a variable that
gets assigned the value of the InputBox. So whatever the user enters as his
answer (in this case 1 or 2), that value gets assigned to the variable, which we
will call Report. Here’s the line of code:

Report = InputBox("Enter 1 to print Report 1; Enter 2 to

print Report 2")

The information that appears in the quotation marks is the text that
appears in the input box that the user will see. His entry of 1 or 2 becomes the
value of the variable, Report.

Once Report has a value, the macro can proceed by determining which
subroutine to run, based on the value of Report.

Your macro is going to state that, if the value of Report is 1, then
subroutine Print1 will execute. If the value of Report is 2, subroutine Print2
will execute. If Report has any other value, the question will reappear. The
code is quite straightforward:

If Report = 1 Then

 GoTo Print1

ElseIf Report = 2 Then

 GoTo Print2

Else

 GoTo Question

End If

Try to avoid naming
a subroutine with the
same name as an
actual VBA command.
As you become more
familiar with VBA, this
will become easier.

Memo

Excel 2007 Macros Made Easy

94

Using the concept of an If/Then/Else
command, the macro enables the user to make an
intelligent choice. We’ll learn more about If/Then/
Else routines in Chapter 10, but as you can see, the
concept is quite easy to understand.

Writing the Subroutines
The subroutines themselves in this example are
VBA print commands. You can turn on your

macro recorder and record yourself printing a print area in order to harvest
the code. Before recording the macro, name the print areas PrintArea1 and
PrintArea2 (select the area, right-click, and choose Name). Then, with the
macro recorder on, click the down arrow in the Name box (see Figure 6-1),
choose PrintArea1 to select the area, and then choose File | Print | Selection |
OK. Turn off the recorder, and you will find this code in your VB Editor:

 Application.Goto Reference:="PrintArea1"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

This is all the code you need for your subroutine, thus the Print1
subroutine will look like this:

Print1:

 Application.Goto Reference:="PrintArea1"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

 End

The Print2 subroutine will be identical to the Print1 subroutine, except
for the substitution of Print2 and PrintArea2. The last subroutine we need
to create to make this work is the Question area of the macro, which utilizes
the InputBox code discussed previously, as well as the If/Then/Else
statement. First the macro will ask the user the question, and then it executes
the proper print commands:

Sub SpecialPrint()

Question:

Name
box

Figure 6-1  Assign range
names to print areas.

� Chapter 6  Using Visual Basic Subroutines and Creating Functions

95

Report = InputBox("Enter 1 to print Report 1; Enter 2 to print

Report 2")

If Report = 1 Then

 GoTo Print1

ElseIf Report = 2 Then

 GoTo Print2

Else

 GoTo Question

End If

Print1:

 Application.Goto Reference:="PrintArea1"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

 End

Print2:

 Application.Goto Reference:="PrintArea2"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

 End

End sub

Figure 6-2 shows
how the operating
macro looks to the user.

If you want to really
get creative and make
this macro more easily
accessible to the user,
so that he doesn’t have
to hunt for it on the

Macros menu, you can place the order for the macro in a button and place that
button on the actual worksheet. Chapter 12 discusses how this process works.

Running Macros as Subroutines
You’ve seen how we can insert subroutines into a macro and call on these
bits of code as necessary. You can also have a macro call another macro, as if
it is a subroutine, because technically, all macros are actually subprocedures,
hence the use of the Sub, End Sub commands to start and end each macro.

User enters
1 or 2 here.

Figure 6-2  Calling a
subroutine

Excel 2007 Macros Made Easy

96

Once a macro is created, its name serves as a command. Thus the macro
GetMyName can be designed to call the NAME1 macro created in Chapter 1:

Sub GetMyName()

NAME1

End Sub

While this particular example might seem useless—creating a new
macro for the purposes of calling an existing macro—you might be able
to visualize the usefulness of this process when thinking about creating
many different macros and calling them as necessary in the course of a new
macro. For example, in Chapter 1 we created a macro that applied several
different formatting changes to a worksheet. It’s quite possible that placing
so many recorded commands in a single macro might overwhelm the novice
macro programmer, particularly if the person recording the commands
made mistakes and then corrected them along the way, or chose additional
formatting features to add. The macro can grow large and be both difficult to
decipher and also difficult to debug should it not run as planned.

Instead, using the technique of calling other macros as shown here, you
could create several small formatting macros, make sure each does its own
task appropriately, and then create one macro that calls on the various pieces
of the overall formatting project, one at a time.

For example, take a macro called HEADINGS that creates and formats the
headings for a worksheet, a macro called COLUMNS that assigns column
width and number formatting codes, a macro called ROWS that formats
the row titles, and a macro called TOTALS that places totals at the bottom
of each column of numbers. All four macros could be combined in one
MonthlyReportSetup macro like this:

Sub MonthlyReportSetup

HEADINGS

COLUMNGS

ROWS

TOTALS

End Sub

� Chapter 6  Using Visual Basic Subroutines and Creating Functions

97

We’ll take a look at formatting macros in greater depth in Chapter 8 and
will discuss this process of running macros as subroutines at that time.

Using skills you will learn in Chapter 7, you can even customize the
formatting further, by asking the user with the help of an input box which
formatting features he would like to utilize, and then use subroutines to call
the various formatting macros as needed.

Creating a Customized Function
Similar to creating macros, you can use the VB Editor to create your own
customized functions. Functions you create are added to the Excel function list,
so they can be called as easily as the AVERAGE or the COUNT function. This
is a great time-saver if you need to execute complicated calculations. Not only
can you condense your calculations into one simple function, but this function
can be made available to all of your other Excel worksheets. Another use for
customized functions is as a means of protecting the details of a calculation.

Use a Function to Make a
Complicated Calculation Easy
Suppose you need to calculate corporate income
tax on a regular basis. The corporate income tax
is calculated at different levels, with the tax rate
changing as the tax-paying corporation’s income
increases. So, for example, a corporation with
taxable income of $100,000 pays 15 percent tax
on the first $50,000, 25 percent tax on the next
$25,000, and 34 percent on the balance. The
corporate tax rates for 2008 are shown in Table 6-1.

It’s possible to write a nested IF formula that
will calculate this tax, no matter what the level
of income is, but there’s no doubt that will be a
complicated formula and cumbersome to re-create

Taxable Income
Over Not Over Tax Rate

$ 0 $ 50,000 15%

50,000 75,000 25%

75,000 100,000 34%

100,000 335,000 39%

335,000 10,000,000 34%

10,000,000 15,000,000 35%

15,000,000 18,333,333 38%

18,333,333 35%

Table 6-1  2008 U.S. Corporate Income Tax Rates

Excel 2007 Macros Made Easy

98

if you have to use the formula frequently. Instead, you can create a function
that does the calculation for you. Not only will you never have to worry about
creating the formula again, but you can share the function with anyone else
who needs to calculate corporate tax.

To create the new function, which we’ll call CorpTax, open the VB Editor.
We’ll make this accessible to all worksheets, so open a new module in the
Personal Macro Workbook (click on the Personal Project, and then choose
Insert | Module).

The first line of a function is different from that of a macro, even though
the creation process is basically the same. Instead of Sub macroname, you’ll
enter Function functionname, or in this case:

Function CorpTax

In addition, as you may recall, macro names are followed by a set of
parentheses. We need that for the function name as well. In this case, we’re
going to place a word inside the parentheses: Income. Income will be the
variable that is required by this function—the function performs calculations
on the Income amount. Placing Income in the parentheses will make this
function ask us to identify which cell contains the income for the purposes of
the CorpTax calculations. So the complete first line of our function will be

Function CorpTax(Income)

Now we’re ready to enter the code for this function. We’re going to use
the VBA Select Case statement, a procedure that is similar to the IF
statement. The Select Case structure allows you to order an action to be
performed only if a certain condition is met. In this situation, we’ll set the
Case to be equal to the amount specified as Income. Once we establish that
we’re working with the Income amount, we can list the criteria set forth in
the tax schedule at Table 6-1. Here’s how it looks:

Function CorpTax(Income)

Select Case Income

Case Is > 18333333: CorpTax = Income * 0.35

The word Function
tells Excel that this
is a function. Calling
this a function
instead of a macro
enables Excel to add
the function to the
master function list.

Memo

� Chapter 6  Using Visual Basic Subroutines and Creating Functions

99

Case Is > 15000000: CorpTax = 515000 + (Income - 15000000) * 0.38

Case Is > 10000000: CorpTax = 3400000 + (Income - 10000000) * 0.35

Case Is > 335000: CorpTax = 113900 + (Income - 335000) * 0.34

Case Is > 100000: CorpTax = 22250 + (Income - 100000) * 0.39

Case Is > 75000: CorpTax = 13750 + (Income - 75000) * 0.34

Case Is > 50000: CorpTax = 7500 + (Income - 1500) * 0.25

Case Is > 0: CorpTax = Income * 0.15

End Select

End Function

The way this case procedure works is that, as soon as the case criterion is
met, the calculation is performed, and the function stops. If the corporation’s
income is $15,000,001, the first case criterion will be examined, and since
the income is not > $18,333,333, this will be rejected and the function moves
to the second criterion. Because this criterion applies, the calculation is
performed at this point in the function, and the remaining case options are
ignored. If the corporation’s income is $10,000, the function will proceed
through each possible scenario, rejecting each one, until the final scenario,
Case Is > 0, is met, and the tax is calculated.

Once the function is entered into the VB Editor, choose File | Save
PERSONAL.XLSB, and you’re ready to test this function.

Back in the worksheet, enter some numbers in a column. These numbers
represent the taxable income of some corporations. Follow these steps to run
your new function:

Click in the cell where you want the first tax 1.	
calculation to appear (see Figure 6-3).

Click the Formulas tab.2.	

Click the Insert Function button on the 3.	
ribbon.

In the Insert Function dialog box (see 4.	
Figure 6-4), select the All category.

If you’re confused
about how we
decide where the
parentheses go
in the formulas
that appear in this
function, see the
section “Arithmetic
Operators in Order
of Precedence” in
Chapter 9.

Memo

Save your changes in
the VB Editor quickly
by pressing ctrl+s.

The Easy Way

Figure 6-3  Taxable income in need of tax calculation

Your tax
calculation will
appear here.

Excel 2007 Macros Made Easy

100

Scroll through the alphabetical 5.	
list until you find your CorpTax
function. It will be alphabetized
under “C” but will appear as
PERSONAL.XLSB!CorpTax.

Click OK.6.	

Click the cell identifier box in the 7.	
Function Arguments window and then
click on the cell containing the taxable
income, and click the red button to
return to the Function Arguments
window. Alternatively, you can enter
the cell reference for the taxable
income cell in the Income field of the
Function Arguments window. Notice
that the tax calculation now appears in
this window. See Figure 6-5.

Choose All.

Click your
function.

Figure 6-4  Finding your new function

Calculation
appears here.

Enter cell
reference here.

Click here to use your mouse
to identify cell reference.

Figure 6-5  Using the CorpTax function

� Chapter 6  Using Visual Basic Subroutines and Creating Functions

101

Click OK to place the tax calculation on your worksheet.8.	

Note that you now can copy this formula to other cells in your 9.	
worksheet without having to open the Insert Function window again.

Use a Customized Function
to Hide Sensitive Data
Rather than planning a formula on a worksheet where everyone can see it,
you can create a function that lives in the VB Editor, where only authorized
eyes can view the calculation process. For example, say it’s time to calculate
bonuses for employees and the bonus calculation is a secret formula.

We’ll start with a spreadsheet that lists employees and the quarterly
revenue that they generated. In this fictitious company, second-quarter sales
are typically quite high due to the seasonal nature of the business. So the
company owners want to reward their salespeople with a higher bonus for
sales that exceed quota in quarters 1, 3, and 4, and a lower bonus in quarter 2.
Here’s the secret formula:

Q1 sales * .1%
Q2 sales * .05%
Q3 sales * .08%
Q4 sales * .075%

Here’s the function that the company owners want to create:

Function Bonus (Q1, Q2, Q3, Q4)

Bonus = Q1 * .001 + Q2 * .0005 + Q3 * .0008 + Q4 * .00075

End Function

When this function is entered into a module in the Personal Macro
Workbook and saved, it joins the other functions on the function list and is
accessible by any macro, but without the calculation formula revealed.

Remember that
your new function
is actually called
PERSONAL
.XLSB!CorpTax. If you
try to enter CorpTax
as a function name
in your worksheet,
you will get an error
message.

Memo

Excel 2007 Macros Made Easy

102

Apply the function by clicking in
the cell where you want the bonus
to appear, choosing Bonus from the
Function list (see Figure 6-6), and
entering the cell references for the
Q1, Q2, Q3, and Q4 amounts. Once
one bonus is entered, the function
can be copied into other cells.

You’ll notice that the Formula
bar shows only the name of the
function and the cell references,
but no calculation information. See
Figure 6-7.

Figure 6-6  Enter cell references as function arguments.

Enter cell
reference here.

No calculation information appears.

Figure 6-7  Hiding calculation details in functions

7
Creating
Interactive
Macros
As you’ve seen in earlier chapters, many macros
can run all by themselves, without requiring any
input from the user. For example, if you create a
macro that enters your initials in the upper-left cell,
it might look like this:

Sub InsertInitials()

 Range("A1").Select

 ActiveCell.FormulaR1C1 = "GP"

End Sub

Other macros, though, require that you halt
macro execution and ask the user for some input.
Maybe you want the user to type in their initials? It’s
OK to hard-code the initials if you’re the only person
who will be using this macro. But if you want the
macro to be useful to others, you have to let them
enter their initials. This means accepting input from
the user while the macro is running. One way to
accept input from the user while a macro executes
is to display an input box to the user.

Excel 2007 Macros Made Easy

104

In programming, an argument is some data that
you supply to a command such as the InputBox
command. In VBA, these data are enclosed in
parentheses. Here is the complete syntax for the
InputBox command in VBA:

InputBox(Prompt, Title, Default, Left,
Top, HelpFile, HelpContextID, Type)

Each item within the parentheses is an argument.
But most arguments are optional—you can omit
them, and often you simply don’t need them, which
is why they’re optional in the first place. The only
required argument for an input box is the Prompt,
which is a brief label that appears just above the text
box where users type in their data. This caption tells
the user what to type in. So, the programming that
displays the simplest kind of input box uses only one
argument, the Prompt argument, like this:

x = InputBox("Please enter your
initials")

Figure 7-1 illustrates this input box. The user sees
the descriptive prompt and can type whatever they
wish in the text box.

If you provide no Title argument, the title bar of
the input box displays Microsoft Excel. However, you
can, if you wish, provide your own argument for the
title, like this:

x = InputBox("Please enter your
initials", "Enter Initials")

Figure 7-2 illustrates the result of adding an
optional title.

The third argument, Default, is also optional,
but can be useful in some situations. Let’s say that
you have an idea what information the user will type
in. You can save the user time by displaying that
information as the default in the text box. That way,
the user doesn’t have to type anything in if your
default is correct. They merely have to press enter, or
click the OK button. However, the user is also free to
replace your default text with his or her own input, if
necessary. Here’s how to add a default argument to
the InputBox command:

x = InputBox("Please enter your
initials", "Enter Initials", "GP")

Notice in Figure 7-3 that the GP default data is
automatically selected (highlighted) so the user can
just type in some new data if necessary. If this default
data were not selected, the user would have to select
it to replace it.

As you can see, each argument that you add
inside the parentheses is separated from the other
arguments by commas. And it is necessary that you
keep these arguments in the proper order. In this
case, the order is: Prompt, Title, Default, and
so on. This order is how VBA knows which argument
is which, and doesn’t confuse, for example, the title
with the prompt. Even optional arguments must be
included (or commas indicating that they are missing)
if subsequent arguments are used. For example, if you
want to include a default, but omit the title, you must
still use the proper number of commas, like this:

x = InputBox("Please enter your
initials", , "GP")

Using Arguments

� Chapter 7  Creating Interactive Macros

105

An input box is displayed to the user by employing the InputBox
command. But before you can effectively use commands like InputBox,
you need to understand the concept of arguments in programming. An
InputBox, like many other objects, has a list of arguments.

Note that optional arguments are enclosed in brackets; required arguments,
such as Prompt in Figure 7-4, are not thus enclosed.

The term hard-coded
or hard-wired in
programming means
that something is
included in the macro
that never changes.
In the previous
example, the initials
GP are inserted into
the upper-left cell. It’s
hard-wired because
they’re my initials.
However, a more
flexible approach is
sometimes required.
Instead of supplying
the data GP in your
macro, you allow
the user to supply
their own initials.
You get this data by
using an input box or
some other kind of
“control” such as a
message box, or, as
you’ll see later in this
chapter, a list box.

Memo

Figure 7-2  You can add
an optional title to your
input box.

Figure 7-3  You can supply
default information that the
user is free to either accept
or replace.

Figure 7-4  The Auto Quick Info feature shows you the list of arguments
at a glance.

Figure 7-1  The simplest kind
of input box

The user enters initials
in the input filed.

Excel 2007 Macros Made Easy

106

Understanding How
the Input Box Works
You might have wondered about the X in the code examples above. This
is a variable, and we’ll explore this essential programming tool in depth in
Chapter 9. For now, it’s enough to understand that when the user types in
some data, then clicks the OK button (or presses enter) to close the input
box, the X contains the data the user typed in. So you can then use X in your
macro later to retrieve the data.

Writing the Complete Macro
In this example, you want to put the user’s initials in the upper-left cell.
Here’s the complete macro that displays the input box and then puts whatever
the user types into that cell in the worksheet:

Sub GetInitials()

 x = InputBox("Please enter your initials", "Enter Initials")

 Range("A1").Select

 ActiveCell.FormulaR1C1 = x

End Sub

This code first displays an input box to the user, and when the user
closes this box, whatever the user typed into the input box’s text box is now
contained in the variable X.

Writing and Testing Input Box Code
It’s time for you to type in the code that displays an input box, then test that
code in the VB Editor. Follow these steps:

With Excel running and a worksheet visible, press 1.	 alt+f11.

This opens the VB Editor so you can write a macro.2.	

In the VB Editor, choose Insert | Module.3.	

By typing a
command such as
InputBox into the
VBA code window,
and then pressing
the spacebar, you
trigger the Visual
Basic Editor’s Auto
Quick Info feature,
which displays
the entire list of
arguments available
for the command.
Figure 7-4 shows
the InputBox
command’s
argument list.

The Easy Way

You can see the
arguments for any
VBA command by
simply clicking the
command in your
code, to move the
blinking insertion
cursor to that
command. Then
press f1 and you’ll
see the Help window
open with that
command listed.
Of course, not all
VBA commands
have arguments. But
many do.

The Easy Way

� Chapter 7  Creating Interactive Macros

107

A new macro container opens (a module can contain multiple macros).
The Editor displays a blank window on the right (the code window)
and highlights the newly created module in the Project Explorer (if you
have that explorer visible) as shown on the left in Figure 7-5.

If the user doesn’t
type anything into
the input box, the
variable X will contain
nothing. Sometimes
it’s useful to test
whether the user
typed nothing, and
you can do that by
seeing if X = ""
(an empty string),
like this:
If x = "" Then
Exit Sub
This code causes
the macro to stop
executing (to exit the
subroutine) if the
user typed nothing
into the input box.
In other words, any
programming code
below this line will
be ignored by VBA
if the user left the
text box blank. We
use an If...Then
structure (described in
detail in Chapter 10)
to test the value in
the variable X.

Memo

Figure 7-5  Write or modify macros in the code window on the right in the VB Editor.

Excel 2007 Macros Made Easy

108

The new module will be called Module1 if this is the first module
you’ve added to this project. The next module is named by default
Module2, and so on. However, you can always click a module’s name
in the Project Explorer to select that module, and then change its
Name property in the Properties window (shown in the lower left in
Figure 7-5). Many programmers like to give their modules descriptive
names, such as TaxMacros or InventoryMacros.

Type the following code into the code module:4.	

Sub GetInitials()

 Dim strInitials As String

 strInitials = InputBox("Please enter your

initials", "Enter Initials")

 Range("A1").Select

 ActiveCell.FormulaR1C1 = strInitials

End Sub

Notice that I used the Dim command here to formally declare a
variable—strInitials—that will hold the user’s input. This is
considered good programming practice because declaring variables
can avoid some kinds of errors, and also makes the code somewhat
easier to understand and read. I also used another common
convention, naming the variable with a prefix, str, identifying it
as a string (text) variable type. Finally, using the word Initials in the
variable name makes it easier to see what purpose the variable serves.

Finally, test your newly written macro by pressing 5.	 f5.

This tells the Editor to execute the macro, and also hides the Editor
so you can see what happens in the current worksheet. Note that
pressing f5 will execute whatever macro currently displays the
blinking insertion cursor. So be sure to click within the macro’s code
to put the cursor in it before pressing f5.

� Chapter 7  Creating Interactive Macros

109

Message Boxes: Simpler
Communication with the User
If you want to display a message to the user about something while a macro
runs—but don’t need any input from the user—use a message box. This
control is similar to an input box, but a message box has no text box into
which the user can type. And, in its simplest form, a message box has only
a single button, OK, that the user clicks after reading whatever the message
box says. In the MsgBox command, you type the message as the Prompt
argument, and that’s the only required argument. The command for creating
a message box looks like an abbreviation: MsgBox.

MsgBox ("Cells have been reformatted.")

When this message is displayed (see Figure 7-6), users can’t provide your
macro with any input. All they can do is click OK or press enter to close the
message box.

Using Message Box Buttons for Feedback
You can, however, use a message box to send back limited information from
the user to your macro. To do this, you can display various sets of built-in
buttons. Here’s the formal syntax for the arguments that you can provide to
a message box:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

Notice that the Prompt is the only argument that is required. However,
the Buttons argument can be optionally included to display buttons other
than the default OK button. The five optional sets of buttons for a message
box are shown in Table 7-1.

All you have to do to display an optional set of buttons is to provide the
Value number as the Buttons argument. Say, for example, that you

Figure 7-6  A simple
message box merely displays
information to the user, but
can’t send any user input back
to the macro.

Excel 2007 Macros Made Easy

110

wanted to display the common Yes, No, and Cancel buttons. You
would use the value 3 as your Buttons argument, as illustrated in
the following code:

x = MsgBox("Do you want to continue?", 3)

Execute this code and you’ll see the message box
displayed in Figure 7-7.

Notice that when you use the Buttons argument,
you must provide a variable that will hold the result (the
user’s choice of buttons). In our code example, we used the
variable X. After the user clicks a button, X contains one of
the values shown in Table 7-2.

Here’s a complete macro illustrating how to use buttons
in your code:

Sub Message()

x = MsgBox("Do you want to continue?", 3)

If x = 7 Then Exit Sub

MsgBox ("OK, we'll continue with this macro.")

End Sub

When this macro executes, it displays a message box with Yes, No,
and Cancel buttons. We get the user’s response in the variable X. That
response can be 6, 7, or 2, based on whether the user clicks the Yes,
No, or Cancel button respectively.

Constant Value Description

vbOKCancel 1 Displays OK and Cancel buttons.

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

vbYesNo 4 Displays Yes and No buttons.

vbRetryCancel 5 Displays Retry and Cancel buttons.
Table 7-1  Optional Buttons
That Can Be Displayed in a
Message Box

Figure 7-7  This message box provides user
feedback to your macro, based on which button
is clicked.

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

Table 7-2  Returned Values for MsgBox
Button Clicks

� Chapter 7  Creating Interactive Macros

111

In this case, we use an If...Then structure to test the value in X. If the
value is 7, the user responded by clicking No when asked if they wanted to
continue, so we exit the subroutine (Exit Sub) and thereby stop the macro
from running. But if they clicked the Yes or Cancel buttons, the subroutine is not
exited; the rest of the macro executes, and another message box is displayed.

Using the Status Bar for More Subtle Feedback
Input boxes and message boxes are excellent ways to communicate between
your macro and the user. But they do have one potential drawback: they stop

your macro in its tracks, just like a salesman who puts his foot in your door.
You can’t continue executing a macro until the input box or message box is

closed. It sits there and demands notice. Often this is desirable. Your macro
wants the user to be sure to see a message, or some information must be
supplied by the user. But what about situations where you want to display
information that the user can optionally ignore? Take the example earlier
in this chapter. It used a message box to tell the user that cells have been
reformatted. Generally, the user knows that they’ve just reformatted cells,
so there’s no need to stop everything to display a message box telling them
this. However, they might want to sometimes check to see if cells have been
reformatted.

A solution is to display this kind of optional information on the status
bar at the bottom of the Excel window. The information will be visible to
the user, but it won’t halt execution like a message box does. Here’s an
example showing how to use the StatusBar object in your code to display a
message:

Sub StatusBarMessage()

Application.StatusBar = "Cells have been formatted..."

End Sub

Try this little macro and see how it works. To erase the contents of the
status bar, use this code:

Application.StatusBar = ""

Some programmers
prefer to use built-in
constants rather
than values when
performing such
tasks as specifying
arguments or testing
variables. Sometimes
when you look at an
argument list in the
VBA Help system,
you’ll see tables like
Table 7-1 or 7-2.
When you write your
macro you can use
either the value (such
as 2) or the constant
(a descriptive word,
like vbCancel).
Here’s how the
previous example
code would look if
you chose to use the
constants:

Sub Message()

x = MsgBox("Do
you want to
continue?",
vbYesNoCancel)

If x = vbNo
Then Exit Sub

MsgBox ("OK,
we’ll continue
with this
macro.")

End Sub

The Easy Way

Excel 2007 Macros Made Easy

112

Creating Custom Dialogs
You now know how to use various sets of buttons to provide the user with a
way of communicating simple information to your macro—such as cancel,
ignore, or retry. But you sometimes want to allow the user to select from a
larger or more varied group of options. For example, rather than forcing the
user to type in the name of a state, you can provide a list of all the states, from
Alabama to Wyoming.

Or you may need to get extensive or complex information from the user.
You might need to display a form for them to fill in. To do this, you can create
your own custom dialog box. It’s not an input box or message box, but instead
something you craft to suit special user-interaction requirements. The VB
Editor has sophisticated tools that allow you to design many kinds of forms
the user can fill in. These are called UserForms. They can be small, like input
boxes, or they can fill the screen. UserForms allow you great freedom in how
you design them and what controls you put on them.

Offering the User a List of Options
To see how to work with UserForms, let’s design one now. You will add a
ListBox to a form, and also add Cancel and OK buttons, so the user has
a way of closing your dialog box (a UserForm, when displayed to the user, is
usually called a dialog box).

In this example, you want to display a list of options to the user. Let’s
assume that you regularly need to change the font size in various cells to
small, medium, or large. You want to display a dialog box that the user can
click to select between these options.

To add a UserForm to your project, follow these steps:

Start Excel running and press 1.	 alt+f11 to open the VB Editor.

Choose Insert | UserForm.2.	

You now see the Editor looking like Figure 7-8—with a new, blank
form in the right window (this is called the design window when

� Chapter 7  Creating Interactive Macros

113

you’re building a form). You also see the Toolbox on the left side,
containing the various controls you can add to the form. If you don’t
see the Toolbox, choose View | Toolbox.

Move your mouse pointer around the Toolbox. Each time you pause 3.	
the mouse on an icon, a description of that icon appears.

Locate the CommandButton control in the Toolbox, then drag and 4.	
drop it onto your form.Figure 7-8  Here’s your new

UserForm, ready for you to
add controls to it.

Excel 2007 Macros Made Easy

114

When you drop a control, it will be automatically selected (it has a gray 5.	
frame around it with several drag handles you can use to resize it).

Drag these handles until you have a roughly square button (see 6.	
Figure 7-9 for reference).

Repeat steps 4 through 6 to add a second button.7.	

Now click the left button to select it. Then locate its Caption property 8.	
in the Properties window. Notice that by default it is captioned
CommandButton1, CommandButton2, or whatever number
represents the order in which you added it to the form. In any case,
you want the left button to be captioned OK. So double-click the

current caption (such as CommandButton1) in the
right column in the Properties window. This selects the
existing name. Type in OK and press enter. Notice that
the caption on the button itself immediately changes.

�Repeat step 8 to change the right button’s caption 9.	
to Cancel.

	� Now you have the set of OK and Cancel buttons typical
of most dialog boxes, as you can see in Figure 7-9.

Now add a 10.	 ListBox control to this form.

Adding Items to a List Box
Now that you have the visible surface of your form, you need to write some
code that fills the ListBox with the options you want to display to the user. To
get to the code window, you can just double-click anywhere on the UserForm.
But for this example, double-click the button you’ve captioned Cancel.

Now the code window opens, with some subs already created for you. The
Editor has provided places where you can write code that responds when the
user clicks either of the buttons, or the UserForm itself. (These subs that react

Figure 7-9  You now have
the familiar OK and Cancel
buttons on your UserForm.

� Chapter 7  Creating Interactive Macros

115

to user clicks are called event handlers—a click is an event that happens, and
you need to handle it with some code.)

You want to simply close this dialog box and end the execution of this
little program if the user clicks the Cancel button. So add this simple code to
whichever CommandButton you have captioned Cancel:

Private Sub CommandButton1_Click()

End

End Sub

Now test this. Press f5. The UserForm is displayed.
Click the Cancel button. The UserForm now disappears.
Exactly what you wanted.

Now you need to add the options to the ListBox. To
do this, you use the AddItem command. Back in the VB
Editor, notice at the top of the code window there are two
drop-down lists. Open the left one and select UserForm.
The right-hand list contains all the events you can handle
for the UserForm itself. In this right-hand list, click the
Activate event. The Editor inserts the correct sub to
handle this event.

Activation occurs when the UserForm is first
created—even before the user actually sees it displayed. So this is a good place
to put housekeeping code, anything that needs to be done to the form before
the user interacts with it.

You want to display three font size options to the user: Small, Medium, and
Large. You’re designing this form, so you can name these options whatever
you wish: tiny, eensie, whatever. Here’s the code you should now type into the
Activate event:

Private Sub UserForm_Activate()

ListBox1.AddItem ("Small")

ListBox1.AddItem ("Medium")

ListBox1.AddItem ("Large")

End Sub

If you want to quickly
switch between code
view and design view,
click the View Code
or View Object icons
in the title bar of the
Project Explorer, as
shown in Figure 7-10.

Memo

View Code

View Object

Figure 7-10  Click these icons
to switch between code view
and design view.

Excel 2007 Macros Made Easy

116

Test this by pressing f5 and noticing how these options are displayed to
the user. Click the Cancel button to close the UserForm. You might want to
resize the ListBox at this point, so it fits comfortably around the displayed
options—not too much blank space, but also not covering up any options.
Make the box too small and the Editor will automatically add scroll bars.

Responding to the User’s Selection
Our final job is to write code that reacts when the user selects an option in the
ListBox and clicks the OK button. This code should make the font of the
current cell small, medium, or large—based on which item in the ListBox
the user chooses.

This code should go in the OK button’s Click event. It should check to
see which, if any, option has been clicked in the ListBox and then make the
appropriate change in font size.

To figure out which item is clicked in a ListBox, you use the box’s
ListItem property. Here’s how it works: a value of –1 means nothing was
selected (so we’ll just respond by closing the dialog box and doing nothing).
A value of 0 means that the first item (small in this example) was clicked. A
value of 1 means the second item was selected, and a value of 2 means the
third item, Large, was chosen by the user. Here’s the code that you should
type into the OK button’s Click event:

Private Sub CommandButton2_Click()

If ListBox1.ListIndex = 0 Then Selection.Font.Size = 8

If ListBox1.ListIndex = 1 Then Selection.Font.Size = 12

If ListBox1.ListIndex = 2 Then Selection.Font.Size = 18

End

End Sub

There’s no need to test for the –1 (no selection) because this code only
changes font size if the ListIndex is 0, 1, or 2. If the ListIndex is –1,
nothing happens at all, which is the result we want.

� Chapter 7  Creating Interactive Macros

117

Go ahead and press f5 to see the effect of your efforts. You can of course
modify this form to suit your own needs—add as many items to the list as
you wish.

There is, of course, much more you can do with UserForms. You can add
controls from the Toolbox to display pictures, add labels or text boxes, create
sets of buttons or check boxes the user can click, and various other types of
interfaces.

You might wonder why
0 represents the first
item in a ListBox, 1
represents the second
item, and so on. It’s
due to a mistake made
decades ago when
programming was
just getting started.
Some long-forgotten
committee decided:
Why waste the 0?
Let’s use zero as the
starting value for
lists! Not so good
an idea, but it’s too
late now to fix this
oddity in computer
programming.

Memo

You can find lots of sample code online. A good
place to start is to choose Help | MSDN on the

Web. This takes you to the gateway of a rich collection of
programming examples. Or you can always use Google to
search for specific code examples, such as Excel ListBox.

Link

This page intentionally left blank

8
Using Macros
to Format Cells
As you know, there are myriad formatting
options available to you on the Excel ribbons. But
sometimes the format selection isn’t exactly what
you’re looking for, or sometimes there are so many
formatting changes that need to be applied that
the steps to reaching the desired appearance of
your worksheet seem endless. You can customize
the formatting tools so they meet your needs with
the help of macros, and you can also automate a
comprehensive formatting overhaul in macros that
can be recalled into service quickly.

Excel 2007 Macros Made Easy

120

Using Macros to Change
Existing Formats
Excel provides a selection of date formats that, on first glance, seem to cover
every possible presentation of the date. But for some, the selection isn’t
comprehensive enough. You can post a date using your own unique style by
assigning the date command and the desired style to a macro.

Looking at the U.S. date format options (right-click on a cell and choose
Format Cells, then click the Date category), I see there is no option for
03/14/2001—the date, using slashes, and forcing the month to a two-digit
number.

Typically when you create a customized format, the new format resides
within the workbook where it was created. We can create a customized date
format and make that format available to other workbooks by saving the
process in a macro.

We can record this process of date customization, so let’s first clear our
worksheet of the formatting box. We don’t want the macro recorder to record
cursor movement, so place the cellpointer in any cell where you would like to
see a date appear before you begin recording.

To record the new date format macro, follow these steps:

On the Developer ribbon, click Record Macro.1.	

Enter 2.	 MyDateFormat as the macro name.

�Assign this macro to 3.	 ctrl+shift+d if you plan to use it
frequently.

�Store the macro in the Personal Macro Workbook so it 4.	
will be available to all of your workbooks.

�Enter a description, 5.	 Date format 03/14/2001 as a
reminder (see Figure 8-1).

Don’t despair when
you see March 14th
as the date in the
date format list. Excel
uses 3/14/01 as the
default date just for
purposes of display-
ing the different
styles. The actual date
you enter in a cell will
appear once you’ve
chosen a style.

Memo

Figure 8-1  Recording our customized date style

� Chapter 8  Using Macros to Format Cells

121

Click OK.6.	

Right-click on your active cell and choose 7.	
Format Cells.

Choose the Custom category.8.	

Scroll to find the date options, and click once 9.	
on m/d/yyyy, the format closest to what we
want to use.

In the Type field (see Figure 8-2), customize 10.	
your date format to show: mm/dd/yyyy.

Click OK.11.	

Turn off the macro recorder by clicking the 12.	
Stop Recording option.

Test your macro by entering a date in the cell
you just formatted. I entered 1/3/08 and my new
format presented the date as 01/03/2008—just what

I wanted to see! Now test your macro further by closing the workbook, opening
a new workbook, and entering a date in a cell. Then press ctrl+shift+d while
your cellpointer is on that cell to assign the desired date format to the cell.

If you examine the code in the VB Editor, you’ll see that all of those steps
above resulted in one very simple line of VBA code, shown in Figure 8-3.

Design your custom date format here.

Figure 8-2  Customizing a
format

Figure 8-3  Customized
MyDateFormat macro

Excel 2007 Macros Made Easy

122

Changing the Appearance
of a Worksheet
You can create simple macros to format the different areas of your worksheet.
Then, rather than hunting around the ribbons or trying to remember
keyboard shortcuts or context menu commands, you can highlight an area
of your worksheet, bring up your macro list, and quickly apply the type of
formatting you like to use.

A Macro to Format Column Headings
This macro applies your favorite column heading style: bold, centered, and
12-point Arial font. Because the formatting features are readily available on the
screen in the ribbons, you can record this macro. Select some cells to which
the formatting will apply, or with just a single cell selected, follow these steps:

Start the macro recorder, and assign a name to the 1.	
macro. I don’t typically assign keyboard shortcuts to
macros unless I use them quite frequently. Since I’m
going to create several different formatting macros, I’m
just going to assign names and not keyboard shortcuts,
so that I won’t confuse which shortcut goes with which
macro. (Figure 8-4 shows that I am naming the macro
ColumnHeadings.) Then click OK to start the recorder.

With the cell or cells already selected, click the Home 2.	
ribbon and apply your formatting choices: Bold, Center
alignment, and Arial 12 font.

Click the Stop Recording button at the bottom of your 3.	
worksheet.

Taking a look at the VBA code that came out of that macro, in Figure 8-5, you
can see first that the macro begins by applying the Bold feature to the selected

The point of selecting
cells before turning
on the macro
recorder is that
you don’t want the
recording process
to include selecting
cells. That selection
process becomes
part of the recorded
macro and thus
interferes with your
applying the macro
to different areas of
selected cells in the
future.

Memo

Figure 8-4  Creating a format-
ting macro

Entering a description will help you recall
which formatting features this macro applies.

� Chapter 8  Using Macros to Format Cells

123

cells. Next there is a series of With
Selection statements, applying
the other choices we made to the
selected cells. You can also see that
there is a lot of wasted code.

You can choose to leave all of
the code intact, but I recommend
cleaning up the macro so that
only the necessary code lines are
in use. This is so that, months or
even years from now, when you
look back at this macro, you won’t
have to pore over the lines of code
trying to remember what was to
be accomplished. Also, if someone
else examines this macro, the
necessary code will be obvious and
the extra lines of code will be gone.
The macro will be much easier to
understand.

Upon examination, I see that
the first With Selection block
produces a center alignment. The

command for center alignment appears in the first line of code beneath the
With Selection command—all the other statements in the section are
not required for centering and can be removed, leaving us with the following
statement.

 With Selection

 .HorizontalAlignment = xlCenter

 End With

Figure 8-5  Examining
recorded macro code

Excel 2007 Macros Made Easy

124

The second With Selection segment of this macro’s VBA code applies
the new font selection, Arial. The rest of that code segment is unnecessary—
but wait! Take a look at the second line of the code in this selection:

 With Selection.Font

 .Name = "Arial"

 .Size = 11

 End With

When I recorded myself imposing the Arial font upon my selected cells,
the Arial font command was placed in the macro, and the default font size
of 11 was also applied, along with other defaults (such as no strikethrough, no
superscript, and so on). In the next With Selection segment of my code,
the change in font size to 12 is ordered, but there’s no reason why we can’t
consolidate a bit more and incorporate the revised font size in the same area
of code as the font selection. Thus we show the two necessary lines of code,
after the rest of the lines of code in the section have been removed:

 With Selection.Font

 .Name = "Arial"

 .Size = 12

 End With

By making this change in the code, we can now remove the entire last
With Selection area of the VBA code. So our final macro looks like this:

Sub HeadingFormat()

' HeadingFormat Macro

' Bold,Centered,12 point Arial

 Selection.Font.Bold = True

 With Selection

 .HorizontalAlignment = xlCenter

 End With

 With Selection.Font

 .Name = "Arial"

 .Size = 12

 End With

End Sub

� Chapter 8  Using Macros to Format Cells

125

A Macro to Format Number Appearance
Frequently I’ll create a worksheet full of numbers, and discover that the
default number format applied by Excel is not the format I want. I don’t use
the same format every single time, but there are a few standard formats that I
use frequently enough that I’d like to be able to grab them in a hurry, with the
fewest number of clicks. My favorite number formatting style is the Comma
style, with no decimal places, and I prefer to have negative numbers displayed
in red with parentheses.

Again, I’m going to select cells (or even just one cell) before turning on the
macro recorder—this process keeps the recorder from trying to record my cell
movements or mouse selection. That way I can easily apply the format to any
cells simply by selecting the cells, and then running the macro.

Here are the steps for creating a macro that will apply my favorite style of
number formatting.

Turn on the macro recorder. Name this macro, save it 1.	
to the Personal Macro Workbook, and provide a brief
description, similar to the example in Figure 8-6. Then
click OK to begin recording.

Apply the number formats you like to the selected 2.	
cell(s). You can click on the Home ribbon to find some
of the number format tools, or you can right-click on
the selected cell(s), choose Format Cells, and then
Number, and then make your formatting selections
(see Figure 8-7). Click OK to apply your choices.

If there are font formats you want to apply to your numbers, such as 3.	
a font selection, an alignment, or an underline feature, you can make
those selections at this time as well.

When all formatting selections have been made, turn off the macro 4.	
recorder.

Figure 8-6  Recording the
NumberFormat macro

Excel 2007 Macros Made Easy

126

Test your macro by
entering some numbers in a
new area of your workbook,
and then choosing your
NumberFormat macro from
the Macros list.

Once again, it makes
sense to examine your
macro code for unnecessary
lines of code. If you only
applied a number format,
the code is simple and does
not need scouring. If you
applied font selections as
well, there may be lines of
code that can be removed
to streamline the code and

make it more understandable. Here is the code for my NumberFormat macro:

Sub NumberFormat()

' NumberFormat Macro

' Comma,No cents, No zeros

 Selection.NumberFormat = "#,##0_);[Red](#,##0)"

End Sub

Change the Appearance of a Worksheet
Sometimes you want to change not just the appearance of numbers or
headings, but the appearance of the worksheet as a whole. Perhaps you want
to display the worksheet without gridlines, or maybe you want to adjust the
width of columns. You might prefer a specific font style and size. We can
create a macro that applies these specifications to a worksheet.

Depending on the types of changes you want to apply, you can preselect either
the entire worksheet (by clicking in the box to the left of the Column A letter),

Click the Number
tab to display
formatting options.

Select options for
decimal places,
comma usage, and
negative number
presentation.

Figure 8-7  Choosing a
number format

� Chapter 8  Using Macros to Format Cells

127

or you can select some columns or some rows. In preparation for recording this
macro, think about what will be affected. If you’re going to adjust column width,
you’ll need to select some columns. Likewise, you’ll need to select some rows if
you want to adjust row height.

For this example of a macro to change the appearance of a spreadsheet,
I’m going to select the entire worksheet after I begin recording. My macro,
which I’ll call MyWorksheetSetup, will remove gridlines, adjust column width
to nine characters, and set Arial as the font on the entire worksheet.

Turn on the macro recorder. Name the macro, store it 1.	
in the Personal Macro Workbook, and provide a brief
description, similar to Figure 8-8.

Click the Select All button in the upper-left corner of 2.	
the worksheet.

Click the Page Layout ribbon, and then uncheck the 3.	
View box beneath the Gridlines heading.

Slide one of the column bars between column letter 4.	
headings so that the new column width for selected
columns is nine characters.

Change the font on the Home ribbon to Arial.5.	

Turn off the macro recorder.6.	

Test the macro by opening a new workbook and running the macro.
Examining the VBA code, I can see that the only change I might want to
make is to remove the extraneous code in the With Selection.Font
area, where the only code I need is this:

 With Selection.Font

 .Name = "Arial"

 End With

The completed macro appears in Figure 8-9.

Figure 8-8  Formatting a
worksheet

Excel 2007 Macros Made Easy

128
Changing a Worksheet
Color Scheme
Here’s a quick little macro that you can use to apply a formatting change to
the background color of your worksheet. With this macro, you can change the
appearance of the rows on your worksheet so that every other row is green—
just like the old computer printouts of the ’70s and ’80s.

This macro uses some features that are discussed in greater depth
elsewhere in this book, but since the macro deals primarily with formatting,
it seems appropriate to include it here. There is a For/Next loop in this
macro—you’ll learn how to create your own For/Next loops in Chapter 11.
You’ll also create a variable in this macro. This gives you a head start on the
next chapter, Chapter 9, which is all about variables.

To use this macro, you select an area of your worksheet. Within this macro,
which I’ve called AlternateColor, a variable is created to indicate the number
of rows you selected. Then the macro counts by 2, and applies a color shading
to the alternating rows. This is not a macro you can record, so you have to
create this macro in the VB Editor.

Figure 8-9  Macro code
for changing worksheet
formatting

� Chapter 8  Using Macros to Format Cells

129

Sub AlternateColor

Dim i as Long

For i = 1 to Selection.Rows.Count Step 2

 Selection.Rows(i).Interior.ColorIndex = 35

Next

End Sub

The line “Dim i as Long” uses the VBA Dim or Dimension
statement to assign a variable, in this case named “i”. The phrase ‘Dim
variable as Long’ defines the variable as an integer.

The For/Next loop, which is discussed in more detail in Chapter 11,
simply states that you take the rows in the selection area, starting with 1, and
continuing to the end of the selection, you step by 2, meaning you go to every
other line, and you apply an interior color, or a shading. In this case, I have
selected number 35 from the Excel Color Index (see the following Link).
To use a different color for your shading, simply change the 35 to another
number on the color index.

Using and Combining
Formatting Macros
Now that we’ve completed several macros that provide formatting changes for
our worksheets, it’s time to consider ways in which these macros can be used.

When building a worksheet, just as you would select an area and apply
formatting changes to that area, you can select an area and click the Macro
list to display formatting macros that are available. Each macro we’ve created
combines several formatting tools, and you can apply those tools with one
macro choice instead of having to perform each task separately.

When you display the macro list, all of the macros in the Personal Macro
Workbook appear, along
with any macros saved in
your current workbook,
and any macros that are

You can view the Excel color palette with it’s
corresponding numbers at http://www.mvps.org/

dmcritchie/excel/colors.htm.

Link

http://www.mvps.org/dmcritchie/excel/colors.htm
http://www.mvps.org/dmcritchie/excel/colors.htm

Excel 2007 Macros Made Easy

130

saved in other workbooks currently open. Choose one of your formatting
macros, click the Run button, and all the formatting tasks you loaded into
the chosen macro are applied to the area of the worksheet you selected. Or, if
you created a macro like the MyWorksheetSetup macro that was designed to
format an entire worksheet, you don’t need to select any cells before running
the macro.

Combining Macros
You can take pieces of the macros you created and make new mega-macros,
combining the pieces that you find useful. For example, previously we
created the MyWorksheetSetup macro that formatted the appearance of the
entire worksheet. We also created the NumberFormat macro, changing the
formatting for number cells in the selected area.

The MyWorksheetSetup macro performs the task of selecting all the cells
in the worksheet. Why not take the customized number format and apply
that to all of the cells as well? We can grab the code from the NumberFormat
macro, place that code in the MyWorksheetSetup macro, and now the entire
worksheet will also have customized number formatting, all done by running
one single macro. Here’s how it works:

Open the VB Editor.1.	

Find the NumberFormat macro.2.	

Copy the line of code that applies your customized number format to 3.	
the selection:

Selection.NumberFormat = "#,##0_);[Red](#,##0)"

Find the code for the MyWorksheetSetup macro.4.	

Insert the line of code that you copied from the NumberFormat 5.	
macro. The code can be placed anywhere after the Cells.Select
line and before the With/End With segment.

Save your changes (6.	 ctrl+s).

Be sure to copy and
not cut the code from
the number format-
ting macro. We still
want to keep that
macro intact, so don’t
remove any code line;
just copy the code to
the clipboard.

Memo

� Chapter 8  Using Macros to Format Cells

131

Here’s the revised MyWorksheetSetup macro:

Sub MyWorksheetSetup()

' MyWorksheetSetup Macro

' Entire worksheet, No gridlines, columns 9 characters, Arial font

 Cells.Select

 ActiveWindow.DisplayGridlines = False

 Selection.ColumnWidth = 9

 Selection.NumberFormat = "#,##0_);[Red](#,##0)"

 With Selection.Font

 .Name = "Arial"

 End With

End Sub

Test this macro on a new workbook and you should find that, in addition
to the other formatting changes we placed in the MyWorksheetSetup macro,
now the number formatting has been applied as well.

Using VBA Commands to
Select Worksheet Areas
So far we’ve either selected an area of the worksheet before recording a
macro, so that when we run the macro, we will select the applicable cells,
and then run the macro, or we have selected the entire worksheet within the
macro and then applied macro formatting commands to the entire worksheet.

You can also arrange for an area to be selected within the macro. Here are
some common macro commands that select specific areas on your worksheet:

ActiveCell.CurrentRegion.Selectππ   Selects the specified
range beginning with the current cell.

Cells(Rownumber,Columnnumber)ππ   Selects a particular cell
location.

Range("Rangename")ππ   Selects a named range (the range name
appears in quotes).

Excel 2007 Macros Made Easy

132

Range(Cells(startcell),Cells(endcell))ππ   Selects a
range by giving the beginning and ending coordinates. Cell references
are given in numerical terms—cell B5 is shown as Cells(2.5).

Selection.EntireColumnππ   Selects the current column.

Selection.EntireRowππ   Selects the current row.

Try creating a macro by entering commands in the VB Editor that include
a selection command. Here’s an example of a macro that will change the
appearance of the specified region beginning with the current cell, so that the
cells in the region become bold and the columns are set to the best fit.

Sub BoldFormat()

ActiveCell.CurrentRegion.Select

 Selection.Font.Bold = True

 Selection.EntireColumn.AutoFit

ActiveCell.Select

End Sub

To test this macro, open a workbook and enter some information in
adjacent cells. The CurrentRegion command looks for a specified region
of cells, so in this case, the adjacent cells that are filled will receive the
benefit of this macro formatting. Figure 8-10 shows a range of cells before
applying the BoldFormat macro, and Figure 8-11 shows the same range
after applying the BoldFormat macro.

Figure 8-10  Before the Bold-
Format macro is applied

Figure 8-11  After the BoldFormat
macro is applied

9
Using Variables
in Macros
Variables are a major feature of any kind of
programming, macros included. In fact, variables
are common in many ordinary situations in life. For
example, your town’s weather, your monthly VISA
debt, and your appetite are all variables. In its most
general sense, a variable is simply something that
changes. This chapter explores variables and related
issues such as expressions, operators, and arrays.

Excel 2007 Macros Made Easy

134

Why Use Variables?
You create variables in a macro for the same reason that you might have a
manila envelope in your desk with the word VISA written on it. Each month
you put your most recent VISA statement inside. Each time you get a new
bill, you replace last month’s bill with the latest bill. So the general concept of
a variable is: a labeled container that holds a piece of information.

Now, the datum in a variable doesn’t have to change when a program
executes. (I say datum because each variable contains only a single value—a
number or a text string.) For example, you might not use your VISA card for
several months, so the debt value remains the same. Or you might live in San
Diego, and the weather is identical for months. But a variable has the ability
to change, and this gives it power in a program.

A variable’s value (its datum) can change based on user input or based on
actions that take place within the macro as it runs. For example, if you write
a macro that manages your personal finances, you might use an input box
to allow the user to enter this month’s VISA debt. So that variable changes
based on user input. But a variable containing your current net worth will
change based on calculations the macro carries out, such as subtracting food
expenses, adding interest income, and so on.

In a macro you can use the variable’s name in place of its datum (the
number or text string it contains). If you put your current VISA bill each
month in your envelope, you can always look in this envelope labeled VISA
to find out how much you owe at the current time. Similarly, once a variable
is created in a running macro, a location in the computer’s memory contains
that variable’s name along with its “contents,” the information that this
variable “holds” until, or if, the contents are changed by the running program.

You’ve already used variables various times in the code examples in this
book. Macros would be difficult to write without using variables. Let’s use an
example from Chapter 7:

Sub GetInitials()

 x = InputBox("Please enter your initials", "Enter Initials")

� Chapter 9  Using Variables in Macros

135

 Range("A1").Select

 ActiveCell.FormulaR1C1 = x

End Sub

In this macro, you ask the user to type in his or her initials, and then
display the initials in a cell. The variable in this macro is X. Each person who
runs this macro is likely to type in different initials, so the value in X varies.
While the macro executes, this datum is retained. But when the macro stops
executing, the datum is lost and must be retyped the next time the macro
executes. However, before this macro finishes executing, it uses X a second
time to enter the datum in a cell.

Naming Variables
In the previous example, I used the simple name X for my variable. But you
can use any names you wish for your variables, as long as you follow a few
simple rules. A variable name must

Start with a letter, so ππ 12Months is not permitted, but Months12 is.

Not include any of the words already used by VBA itself, such as ππ If,
Sub, or End.

Not be longer than 255 characters.ππ

Not include special characters such as punctuation marks, brackets, the ππ

percent symbol (or any other of those symbols above the numbers in
the top row of keys). So My% is not permitted, although MyPercent is.

Fortunately, it doesn’t matter how you capitalize. MyPercent is seen as
the same variable as mypercent or MYPERCENT. So you can mix and match
capitalization as you wish and VBA will still treat these case variations as the
same, single variable. Of course if you spell the name wrong, you can cause
errors. To VBA, MyPercent and MyyPercent are two different variables.
(This particular error can be avoided by explicitly declaring all your variables.
See the briefing later in this chapter.)

These same naming
restrictions also apply
to other things you
name in VBA, such
as modules, subs,
and so on. VBA will
tell you if you use an
improper name by
displaying a Syntax
Error message (when
naming variables),
or if you try to name
a module incorrectly,
you’ll see a Not a
Legal Object Name
error message.

Memo

Excel 2007 Macros Made Easy

136

Creating a Variable
You can create a variable by simply using it. You can use it with an object such
as an input box as in the previous code example from Chapter 7. Or another
common way to use (and thus create) a variable is to just assign some value to
the variable, like this:

Donkeys = 15

This act simultaneously creates the variable’s name and assigns a value to
it. In this example, you have provided a label (a variable name)—Donkeys—
and said that there are 15 donkeys. The user never sees this label, Donkeys.

Formal variable declaration: some people swear by
it, others swear at it. What’s the truth? Actually,
declaring variables is considered essential for large
programs, but with macros, not so much.

Macros are generally small and self-sufficient, so
you can usually just safely ignore a couple of features
involving variables: declaring them and specifying
the variable’s type. Yes, there are several types of
variables: string (text), integer (no decimal point),
floating point (has a decimal point and therefore can
express fractional numbers), and so on.

But in more advanced, complex programming it’s
considered a good idea to formally, explicitly declare
each variable. Here’s how it’s done:

Sub GetInitials()
 Dim x As String
 x = InputBox("Please enter your
initials", "Enter Initials")

 Range("A1").Select
 ActiveCell.FormulaR1C1 = x
End Sub

The Dim command declares a variable. Dim tells
VBA that we are now creating a new variable. In the
example above, we declare that this new variable’s
name is X and that it is a string variable type.

Recall that if you don’t include this Dim line of code
in your macro, VBA will still automatically create this
variable X for you (this is called implicit declaration).
So what’s the value of explicit declaration?

Formally declaring a variable can help avoid a couple
of bugs (mistyping a variable’s name elsewhere in
the code, or causing VBA to incorrectly interpret a
variable’s type and thus produce a wrong answer).

However, some say that for beginners writing
macros, it’s overkill to worry about explicit
declaration. But go ahead and declare all your
variables if you wish.

One more issue: if you leave out explicit
declarations, which variable type does VBA use
when implicitly creating variables? It uses a special,
all-purpose type called the variant—allowing VBA
to automatically manage the whole issue of variable
typing for you.

Declarations and Types

� Chapter 9  Using Variables in Macros

137

You use it for programming purposes, and you can give it a name that means
something to you.

Most programmers give variables names that help them to understand
the meaning or purpose of the variable. A variable named X is less useful
than one named Donkeys. Descriptive variable names can make it easier to
read your code, and easier to test or modify your macro. However, when the
purpose of a variable is obvious (such as an input box that requests the user’s
initials), go ahead and use brief labels like X or S or whatever.

Combining Variables
into Expressions
Variables can interact with each other. Here’s an example showing how they
can interact mathematically, adding one variable to another to produce a third
variable:

Donkeys = 15

Monkeys = 3

TotalAnimals = Donkeys + Monkeys

As the third line illustrates, you can use variables’ names as if they were the
same as the contents of the variables. If you say Monkeys = 3, then you have
assigned the value 3 to the word Monkeys. You can thereafter use Monkeys just
as you would use the number 3:

TotalAnimals = Donkeys + Monkeys

The preceding line is the same as the following:

TotalAnimals = Donkeys + 3

The number itself (3 in this example) is called a literal because it’s literally
three, literally a value. String literals are in quotes: “Thomas” is a string literal.
When you combine variables with variables (such as Donkeys + Monkeys)
or combine variables with literals (such as Donkeys + 3), you have created an
expression.

Excel 2007 Macros Made Easy

138

What exactly is an expression? If someone tells you she has a coupon for $1

off a $15 Amy Winehouse CD, you immediately think $14. In the same way,
VB reduces the several items linked into an expression into its simplest form.
This action, reducing something into a simpler form, is called evaluation.

In plain English: If you type 15 – 1 into one of your programs, Visual Basic
reduces that group of symbols, that expression, to a single number: 14. Visual
Basic simply evaluates what you’ve said and uses it in the program as the
essence of what you are trying to say.

An expression is made up of two or more variables (or literals) connected
by one or more operators. We’ll get to operators shortly. The plus sign in 2 + 2
is an operator. Altogether there are 23 operators you can use in your macro
programming.

Certain operators, such as > (greater than), cause expressions to be
evaluated as either true or false (zero represents false, any other number
represents true). Let’s see how this works:

BobsAge = 33

BettysAge = 27

If BobsAge > BettysAge Then MsgBox "He's Older"

BobsAge > BettysAge is an expression. This expression claims that
BobsAge is greater than BettysAge. The greater than (>) symbol is one of several
comparison operators. Visual Basic looks at the variables BobsAge and BettysAge
and at the relational operator that combines them into the expression. VB then
determines whether or not the expression is actually true. The If...Then
structure bases its actions on the truth or falsity of the expression.

In this case, the message box is displayed because the expression is true.
However, if you change BettysAge to 33 or anything higher, then the message
box will not be displayed. The expression will evaluate to False.

Understanding Operators
The > (greater than) operator is only one of many operators. The following
section describes all the other operators.

You can use compari-
son operators with
text as well. When
used with text opera-
tors, the comparison
is made based on the
alphabetic qualities
of the text, with Andy
said to be less
than Anne.

Memo

The term expression
in programming is
frequently used to
describe anything that
can return a result
while the program
executes. Some people
even consider a single
variable as an expres-
sion (or a reference to
an object). However,
I’m using the more
traditional, descriptive
meaning of expression
in this book.

Memo

� Chapter 9  Using Variables in Macros

139

Comparison Operators
Comparison operators always return simply a true or false answer.

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal

= Equal

Is Do two object variables refer to the same object?

Like Pattern matching

Arithmetic Operators

^ Exponentiation (the number multiplied by itself: 5 ^ 2 is 25 and
5 ^ 3 is 125)

– Negation (negative numbers, such as –25)

* Multiplication

/ Division

\ Integer division (This kind of division provides no remainder, no
fraction, no floating-point decimal point: 8 \ 6 results in 1. Integer
division is easier, and the computer performs it faster than
regular division.)

Mod Modulo arithmetic (See the Memo on the left.)

+ Addition

– Subtraction

& String concatenation

Special Note on Mod:
The Modulo (Mod)
operator gives you
any remainder after
a division—but not
the results of the
division itself. This
operation is useful
when you want to
know if some number
divides evenly into
another number. That
way, you could write
a macro that takes
actions at intervals.
For example, if you
wanted to print the
page number in bold
on every fifth page,
you could enter the
following:
If PageNumber Mod
5 = 0 Then
FontBold =
True
Else
FontBold
= 0
End If

15 Mod 5 results in 0.
16 Mod 5 results in 1.
17 Mod 5 results in 2.
But 20 Mod 5 results
in 0 again.

Memo

Excel 2007 Macros Made Easy

140

Logical Operators

Not Logical negation

And And

Or Inclusive Or

XOR (Either but not Both)

Eqv (Equivalent)

Imp (Implication—first item False or second item True)

In practice, you’ll likely need to use only And, Not, and Or from among
the logical operators. These operators mostly work pretty much the way they
do in English. Here’s an example showing how to use Or:

If 5 + 2 = 4 Or 6 + 6 = 12 Then MsgBox "One of them is true."

One of these expressions is in fact true. Six and six equals 12. So the
message will be displayed. Only one OR the other expression needs to be true
in this case.

However, if you use the AND operator instead, then both expressions must
be true for the message to be displayed:

If 5 + 2 = 4 And 6 + 6 = 12 Then MsgBox "Both of them are true."

This evaluates to False, so no message is displayed.

The String Operator
The & operator adds (concatenates) pieces of text together:

N = "Lois"

N1 = "Lane"

J = N & " " & N1

MsgBox J

Results in: Lois Lane

� Chapter 9  Using Variables in Macros

141

Operator Precedence
One last issue involving expressions needs to be explored: precedence.

When you use more than one operator in an expression, which operator
should be evaluated first? Which operator takes precedence over the other?

Understanding What Gets Evaluated First
Here’s an example that uses the multiplication operator and the addition operator:

Msgbox 3 * 10 + 5

Does this expression mean first multiply 3 times 10, getting 30? And then
add 5 to the result? Should VBA display 35 in the message box?

Or does it mean add 10 to 5, getting 15, then multiply the result by 3? This

would result in 45. As you can see, there’s ambiguity here. This expression
can be evaluated two different ways, resulting in two different answers. We
can’t have that.

To make sure that you get the results you intend when using more than
one operator, use parentheses to enclose the items you want evaluated first. If
you intended to say 3 * 10 and then add 5, write it like this in your macro:

MsgBox (3 * 10) + 5

By enclosing that 3 * 10 in parentheses, you tell VBA that you want the
enclosed items to be considered a single value and to be evaluated before
anything else happens.

But if you intended to say first add 10 + 5, and then multiply the result by
3, write it like this:

MsgBox 3 * (10 + 5)

In complicated expressions, you can even nest parentheses to make clear
which items are to be calculated in which order. Here I’ve used two sets of
parentheses:

MsgBox 3 * ((9 + 1) + 5)

Excel 2007 Macros Made Easy

142

VBA, however, does have a built-in order of precedence. Therefore, if you
wish, you can leave out the parentheses. If you work with numbers a great
deal, you might prefer to memorize the following list, which illustrates the
order of precedence, with exponentiation being carried out first, negation
next, and so on.

Although most people just use parentheses and can forget about this
whole problem, here’s the order in which VBA will evaluate an expression,
from first evaluated to last:

Arithmetic Operators in Order of Precedence

^ Exponents (6 ^ 2 is 36. The number is multiplied
by itself X number of times.)

– Negation (negative numbers like –33)

* / Multiplication and division

\ Integer division

Mod Modulo arithmetic (any remainder after division)

+ – Addition and subtraction

The relational operators

The logical operators

Arrays: Cluster Variables
Arrays are variables that have been clustered together. Inside an array
structure, the variables share the same text name, but each one has its own
unique index number. Since numbers can be manipulated mathematically
(and text names cannot), putting a group of variables into an array allows you
to easily and efficiently work with them as a group. You can manipulate the
elements (the individual items) in the array by using loops such as For...
Next described in Chapter 11.

Arrays are used in computer programming for the same reason ZIP codes
are used by the U.S. Postal Service. Picture hundreds of postal boxes with

� Chapter 9  Using Variables in Macros

143

only text labels. Imagine the nightmare of sorting thousands of letters each
day into boxes that are not in some way indexed and numerically ordered.

Numbers vs. Names
Arrays can be extremely useful, particularly in longer or more complex programs.
For example, if you want to manage data about a group of people coming to
dinner this weekend, you can create an array of their names, like this:

Dim Guest (1 To 5) As String

This creates five “empty boxes” in the computer’s memory, and each box
can hold a single piece of text. However, instead of five unique individual
labels for the five variables, the variables share the name Guest, and each
box is identified by a unique index number from 1 to 5.

To fill this array with the names of the guests, you can assign the names
just as you would assign them to normal variables, but use the array name
plus the index number, like this:

Guest(1) = "Lois"

Guest(2) = "Sandy Pourettez from work"

Guest(3) = "Rick"

Guest(4) = "Jim"

Guest(5) = "Mom"

You can tell an array from a regular variable because arrays always have
parentheses following the array name. The index number goes between these
parentheses.

Now that you have the array filled, you can manipulate it in ways that are
much more efficient than using ordinary variables. For example, searching.
What if we wanted to know if a particular name existed in the array? You can
use a For...Next loop to examine the array:

For I = 1 To 5

 If Guest(I) = "Rick" Then Print "Rick has been invited."

Next I

Excel 2007 Macros Made Easy

144

The key to the utility of arrays is that you can search them, sort them,
delete them, or add to them by using their index numbers to identify each item.
Index numbers are much easier to access and manipulate than individual
variable names.

Suppose you need to figure your average electric bill for the year. You could
go the cumbersome route, using an individual variable name for each month,
like this:

JanElect = 90

FebElect = 122

MarElect = 125

AprElect = 78

MayElect = 144

JneElect = 89

JulyElect = 90

AugElect = 140

SeptElect = 167

OctElect = 123

NovElect = 133

DecElect = 125

YearElectBill = JanElect+FebElect+MarElect+AprElect+MayElect+

JneElect+JulyElect+AugElect+SeptElect+OctElect+NovElect+DecElect

Or you could just use an array to simplify the process:

Dim MonthElectBill(1 To 12)

MonthElectBill(1) = 90

MonthElectBill(2) = 122

MonthElectBill(3) = 125

MonthElectBill(4) = 78

MonthElectBill(5) = 144

MonthElectBill(6) = 89

MonthElectBill(7) = 90

MonthElectBill(8) = 140

MonthElectBill(9) = 167

MonthElectBill(10) = 123

� Chapter 9  Using Variables in Macros

145

MonthElectBill(11) = 133

MonthElectBill(12) = 125

For I = 1 to 12

Total = Total + MonthElectBill(I)

Next I

By grouping all the variables under the same array name, you can
manipulate the variables by individual index number. This might look like
a small saving of effort, but remember that data-intensive programs can
manipulate large amounts of data, or may need to reuse the same data in
several different parts of the program.

So the moral is, if you’re dealing with only a little bit of data (like the user’s
name and address), ordinary variables work fine. But if you are working with
larger amounts of data—especially data that’s related in some way, such as a
year’s worth of electric bills—arrays are a more efficient approach.

Creating an Array
The simplest way to declare an array is to use the Dim command:

Dim ArraysName (1 To 12)

The Dim command is said to dimension (make space for) the new array.
The computer is told how much space to set aside for the new array.

To create space for 51 text variables that share the name Employees
and are uniquely identified by index numbers ranging from 1–100, type the
following in a module:

Dim Employees(1 To 100)

You can visualize this array as similar to the first column in an Excel
worksheet: A1:A100. Each cell can contain a single number or piece of text,
and you refer to each of them by the same name (A in this case) and also by
the cell’s number from 1 to 100.

There are several kinds
of arrays, but we’ll
stick to the simplest
in this book. You
can also create arrays
with more than one
“dimension.” They are
similar to a work-
sheet with multiple
columns, or indeed a
set of data covering
multiple worksheets.
But this type of array
is generally not found
in macros.

Memo

Excel 2007 Macros Made Easy

146

Array Rules
Here are a few rules to follow when working with arrays.

You should try to anticipate the number of elements you’ll need in an array,
but be generous and add a bit more. For example, if you have 40 employees,
you might provide room for 100, just in case the company grows. So use 1
To 100 rather than 1 To 40 when declaring that array.

You can name arrays just the same way you name variables: the names are
case-insensitive, but must follow the rules explained earlier in this chapter in
the section titled “Naming Variables.”

Unlike variables, arrays cannot be implicitly declared by simply using
them. You must formally declare each array with the Dim command (or
related commands).

10
Creating
If/Then/Else
Routines
You can use If/Then/Else routines to give logic
to your macros. The process of the macro proceeds
in different directions depending on the results of
an If command. Just like the IF function in Excel,
the If/Then/Else command relies on a logical
statement with a true scenario and a false scenario.

We saw one If/Then/Else command in
Chapter 6, where we created a macro that asked the
user which print area he wanted to print (see the
following box). Here’s a plain-language description
of how the macro works. The macro analyzes the
user response by determining that, if the user
enters 1, then print PrintArea1, and the macro
then ends. The macro logic continues, however,
with an ElseIf command that allows for the
user to enter something other than a 1. If the user
enters something other than 1, the macro doesn’t
end and instead proceeds to the next step, which
determines that, if the user enters 2, then print
PrintArea2, and then end the macro. Finally, if the
user enters a wrong answer, that is, something
other than 1 or 2, the macro contains a provision
to return to the original question and give the user
another chance. (Note that the user also has the
right to cancel the macro operation at any time by
clicking a Cancel button.)

Excel 2007 Macros Made Easy

148

The success of any If/Then/Else routine comes from anticipating all
the possible responses and providing commands to deal with each possible
condition.

Understanding the
If/Then/Else Routine
When you enter an If statement in your macro, the If precedes a logical
statement. It is up to Visual Basic to determine if this statement is true or
false. This statement that follows If is called a conditional expression. The
condition of this statement can be either true or false. If it is a true statement,
the macro proceeds to do what it is told to do in the Then statement.

Sub SpecialPrint()

Question:

Report = InputBox("Enter 1 to print Report 1; Enter 2 to print Report 2")

If Report = 1 Then

 GoTo Print1

ElseIf Report = 2 Then

 GoTo Print2

Else

 GoTo Question

End If

Print1:

 Application.Goto Reference:="PrintArea1"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

 End

Print2:

 Application.Goto Reference:="PrintArea2"

 ExecuteExcel4Macro "PRINT(1,,,1,,,,,,,,1,,,TRUE,,FALSE)"

 End

End sub

SpecialPrint Macro from Chapter 6

The Else statement
in the If/Then/
Else routine is not
a required command
in this If/Then
structure. You can
create If/Then
routines that do not
include an alternate
direction provided by
the Else statement.

Memo

� Chapter 10  Creating If/Then/Else Routines

149

If you only want an action to occur when the statement is true, then your
macro is finished when you have an If and a Then statement.

Create a Simple If/Then Macro
For example, say you have a worksheet that contains numbers that represent
annual sales figures. If the sales figure exceeds 100,000, then you want the
macro to calculate a bonus by placing a figure in the cell to the right that
equates to the original figure times 2 percent.

Before you jump into programming this little macro, think through the
process in baby steps. Here are all the things that this macro needs to do:

Examine the number in the current cell and determine if it is larger ππ

than 100,000.

If the number is larger than 100,000, move the cellpointer one cell to ππ

the right.

Enter a calculation in the new cell that multiplies the number in the ππ

original cell by 2 percent.

Some of this macro can be recorded so that you can harvest the code. You
can record yourself moving the cellpointer one cell to the right, and you can
record the creation of the formula. The only thing you can’t record is the If/
Then statement.

Recording the cellpointer movement and the formula yields this macro code:

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=RC[-1]*0.02"

 ActiveCell.Offset(1, 0).Range("A1").Select

The first line of code reflects the movement of the cellpointer from the
original cell to the cell to the right—Offset(0,1) shows movement of 0
rows and 1 column forward (or right).

The second line of the code provides the formula: No row movement, but
one column back, times 0.02.

Because we want to
use this macro on
several different cells,
be sure to turn on
the Relative Refer-
ences feature before
turning on the macro
recorder.

Memo

Excel 2007 Macros Made Easy

150

The third line of the code moves the cellpointer down one cell, a circumstance
that naturally occurs when you press enter. Offset(1,0) refers to an advance
of 1 row and 0 columns. If instead you want the cellpointer to move to the next
cell in the column of existing numbers (in anticipation of applying this macro to
the next number), then you should change the offset to (1,−1).

Now all you need in order to have this macro make the logical decision is
the If statement that asks if the original cell contains a number greater than
100000.

If ActiveCell.Value > 100000 Then

The preceding line of code asks if the value of the active cell is greater than
100,000. If the answer is true, then the next line of the VBA code executes. If
the answer is false, nothing happens.

Note one final thing—any time you use an If/Then statement, you must
conclude the If/Then section with an End If statement.

Thus the final macro code looks like this:

Sub Bonus()

'

' Macro to calculate bonus

'

 If ActiveCell.Value > 100000 Then

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=RC[-1]*0.02"

 ActiveCell.Offset(1, -1).Range("A1").Select

 End If

End Sub

To execute this macro, place your cellpointer on a cell containing a number
that you want to analyze. Click the Macros button to find your macro on
the list, click on the macro, and then click Run. If the number you chose is
greater than 100,000, your Then sequence is activated and the calculation
appears in the cell to the right of the original number. The cellpointer returns
to the cell beneath the original number (see Figure 10-1).

Cell references in
macros are always
portrayed as Row
first, Column second.
Thus an offset of
(1,−1) refers to one
row forward, or down,
and one column back,
or left.

Memo

� Chapter 10  Creating If/Then/Else Routines

151

Add an Else Operation for a False Answer
So far we’ve created a macro that analyzes a situation, and if the
situation is true, a command is executed. If the situation is not true,
the macro ends. But we don’t have to stop there. We can tell the
macro to perform some other task if the answer to the initial question
is false. In the Bonus macro that we already created, the macro does
nothing if the sales figure is less than 100,000. Instead, we can make
the macro continue to the Bonus column and enter a zero.

You can record yourself performing this task if you like, but if you look at
the macro code that already exists, it should be a pretty simple step to add the
Else clause to this macro, without even recording. We want our Else clause
to have the operation move one cell to the right (we already have that code in
place), and then enter zero. This code should do the trick:

 ActiveCell.FormulaR1C1 = "0"

Then you also need another line of code to provide instructions for where
the cellpointer should end up—just as in the Then part of the macro:

 ActiveCell.Offset(1, -1).Range("A1").Select

And so the completed macro, with instructions for how to behave if the
statement is true and if it is false, looks like this:

Sub Bonus()

' Macro to calculate bonus

 If ActiveCell.Value > 100000 Then

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=RC[-1]*0.02"

 ActiveCell.Offset(1, -1).Range("A1").Select

 Else

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "0"

 ActiveCell.Offset(1, -1).Range("A1").Select

 End If

End Sub

Figure 10-1  The worksheet
after the macro has executed

Excel 2007 Macros Made Easy

152

Add an ElseIf Operation
So we’ve seen how to create a macro containing an If/Then/Else
statement, and that handles the situation when there is only one right and
one wrong answer. Now we’ll take this a level deeper, and add a second If
statement, known as an ElseIf statement, so that if the macro returns a
false answer to the first If statement, there is another opportunity for a true
statement to occur.

This time we’ll add a level of the macro that occurs after the first If
statement executes and produces a false answer. Instead of immediately
assuming there is no bonus to compute and placing a zero in the Bonus
cell, we’ll apply a second criterion—the ability to calculate a bonus if the
sales figure exceeds 75000. This time the bonus calculation will be 1 percent
instead of 2 percent. So the complete bonus calculation is 2 percent if sales
exceed 100,000 and 1 percent if sales are in the 75,000 to 100,000 range.

You can probably figure out this new piece of code without recording any
steps. As a reminder, here’s the code that calculates the first bonus:

 If ActiveCell.Value > 100000 Then

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=RC[-1]*0.02"

 ActiveCell.Offset(1, -1).Range("A1").Select

Now here’s all you have to do add an ElseIf layer that asks if the
ActiveCell.Value exceeds 75,000, and applies a 1 percent bonus:

 ElseIf ActiveCell.Value > 75000 Then

 ActiveCell.Offset(0, 1).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=RC[-1]*0.01"

 ActiveCell.Offset(1, -1).Range("A1").Select

The ElseIf format works the same way as the If code—you must
accompany the ElseIf statement with a Then statement. This piece of new
code can be inserted in the macro. The finished product appears in Figure 10-2.
The results appear in Figure 10-3.

� Chapter 10  Creating If/Then/Else Routines

153

Create a Multilevel If/Then/Else Macro
Back in Chapter 6, you learned how to create a macro using the Case
command to offer the user a selection of several different criteria. We created
one macro that calculated U.S. corporate income tax. We can perform
a similar operation using the If/Then/Else format. Since I’m a tax
accountant, I like to revert to tax examples for my macros. This time we’ll
create a macro called SingleTax that calculates U.S. individual income tax for
a single individual, using the If/Then/Else macro style. In this way you’ll
see how you can nest several layers of If conditions within a single macro.

Here’s a chart showing the 2008 U.S. income tax rates for a single
individual:

10%ππ on income between $0 and $8,025

15%ππ on the income between $8,025 and $32,550; plus $802.50

Figure 10-2  The finished
If/Then/Else macro

Figure 10-3  The Bonus results based
on the calculations in the Bonus macro

In Chapter 11 you’ll
learn about creating
For/Next loops and
you’ll be able to apply
that skill to macros
like this If/Then/
Else macro so that
you don’t have to call
the macro on each
cell—the macro can
run through the entire
list of sales figures
with one command.

Memo

Excel 2007 Macros Made Easy

154

25%ππ on the income between $32,550 and $78,850; plus $4,481.25

28%ππ on the income between $78,850 and $164,550; plus $16,056.25

33%ππ on the income between $164,550 and $357,700; plus $40,052.25

35%ππ on the income over $357,700; plus $103,791.75

Our macro must examine an income number, establish what income
range the income amount falls in, and then calculate the appropriate income
tax and place that amount in a cell.

It’s easier to start this calculation at the top, the 35% tax rate, because then
you can ask if the income is over a certain amount, whereas if you start at the
bottom you have to determine if the income is within a certain range. You
can structure the macro either way, but starting at the top results in fewer
keystrokes.

We could follow the example set in the previous macro and have the macro
examine the contents of a cell. Instead, let’s use the techniques learned in
Chapter 7, and use an InputBox. This way, we’ll ask the worksheet user to
enter the income to be analyzed, and then perform the tasks on the amount
entered in the box.

The first portion of the code sets up the input box:

TaxableIncome = InputBox("Enter your taxable income")

If TaxableIncome > 357700 Then

 ActiveCell.Value = 103791.75 + (TaxableIncome - 357700) * 0.35

ElseIf TaxableIncome > 164550 Then

 ActiveCell.Value = 40052.25 + (TaxableIncome - 164550) * 0.33

ElseIf TaxableIncome > 78850 Then

 ActiveCell.Value = 16056.25 + (TaxableIncome - 78850) * 0.28

ElseIf TaxableIncome > 32550 Then

 ActiveCell.Value = 4481.25 + (TaxableIncome - 32550) * 0.25

ElseIf TaxableIncome > 8025 Then

 ActiveCell.Value = 802.50 + (TaxableIncome - 78850) * 0.15

ElseIf TaxableIncome > 0 Then

 ActiveCell.Value = TaxableIncome * 0.10

End If

� Chapter 10  Creating If/Then/Else Routines

155

This macro gets placed between the Sub
SingleTax() and End Sub lines, and you’ve got a
complete macro. Test the macro by opening a worksheet
and running the SingleTax macro. A dialog box like the
one in Figure 10-4 appears, asking you to input your
taxable income.

When you enter the amount of income and click OK, the correct income
tax calculation appears in the currently active cell.

Create a Nested If/Then Macro
Sometimes one question isn’t enough information to get you to the results
you need. You can create a macro that asks more than one If question, and
produce different layers of actions based on the answers.

For example, let’s say we want to confirm that the taxable income used
in the previous macro is really 2008 taxable income, so that the correct rates
apply. Rather than just providing an input box that asks for the income, we
can first ask for the income, and then ask for a confirmation that this is 2008
income. If the answer is Yes, the macro operation continues and the tax is
calculated. If the answer is No, the macro execution stops and a message
appears telling the user that tax rates for different years are not available.

The first line of the macro remains intact—the InputBox command asks
the user for 2008 taxable income.

Next we need a new If statement, asking if this is really 2008 taxable
income. The following code results in the message shown in Figure 10-5:

x = MsgBox("Is this your 2008 taxable income?", 3)

If x = 6 Then

Next you insert all of the macro code
from the original SingleTax macro. It is
wise to indent this code so that you can
keep track of your If statements and the
related End If statement. Finally, you need

Figure 10-4  SingleTax macro
uses an input box to request
taxable income amount.

The message box
codes (3 for a Yes/
No box, and 6, which
stands for the answer
Yes) can be found in
Chapter 7.

Memo

Figure 10-5  Revised macro asks
user to confirm that he entered 2008
taxable income.

Excel 2007 Macros Made Easy

156

to provide for the possibility that the user did not enter a Yes answer in the
message box. We’ll take care of this contingency by providing an additional
message box advising the user that the tax can’t be calculated, as shown in
Figure 10-6. If the user clicks OK (the only option), the box disappears and the
macro operation ends.

Else

MsgBox ("Unable to calculate your income tax")

End If

The completed macro (named SingleTax2 to distinguish it from its
predecessor) is shown in Figure 10-7.

Figure 10-6  This message
appears if the user indicates
that 2008 income was not
entered.

Figure 10-7  Complete code
for the SingleTax2 macro

11
Exploring Loops
When you have a batch of data that needs
processing, you often tell the computer to do
something over and over. In programming, this
repetitive behavior is called a loop. In real life, it’s
called a job.

Loops are useful in many different situations.
Searching through 5,082 invoices for those
that are overdue involves looping. Addressing
400 envelopes does too. In fact, computers are
sometimes called data processors, and looping is a
big part of the processing that goes on.

One of the most useful commands in VBA is
For. It indicates the start of a commonly used
loop structure. VBA repeatedly carries out the
instructions between the For and its companion
command, Next.

The number of times the computer will loop
is specified by the two numbers listed following
the For. Here’s an example. See if you can guess
the value of the variable X after this loop finishes
executing:

Sub ExploreLoop

For I = 1 To 12

 X = X + 2

Next I

MsgBox X

End Sub

Excel 2007 Macros Made Easy

158

A loop has a loop counter variable, and in a For...Next loop, this variable
is traditionally named I. Nobody is quite sure whether this I stands for
iteration or increment. But the idea is that each time the loop executes, the
value in I is automatically incremented (raised). Equally compelling is the
idea that a loop iterates (repeats).

In any case, the first line of this loop translates: each time this loop executes,
raise the value in the variable I by 1. When I finally reaches 12, the looping is
complete and stops—execution continues with the code following the Next I.
In this example, execution continues by displaying the message box.

In other words, loop 12 times; then stop looping and display the message box.
So, when this code runs, it performs the code inside the loop 12 times.

In effect, 2 is added to the contents of X each time the loop executes. X starts
with 0, but the first time through the loop X contains 2, and then the next
time the loop runs it contains 4, then 6, and so on.

When you run the macro with the message box inside
the loop, you have to click the OK button 12 times.
However, there’s a way to exit a loop early: Press
ctrl+break. This puts you into break mode. A special
message box is displayed, giving you three options:

Continueππ   Resume execution.

Endππ   Exit the macro.

Debugππ   Stay in break mode, where you can
use debugging tools such as single-stepping
through the code, or using the Immediate
Window to check the value of variables. For
example, click the Debug button in the break
mode message box. Now press ctrl+g to
display the Immediate Window. Type ?X in
the Immediate Window and press enter.

This means: display the value currently in
the variable X. The value is displayed in the
Immediate Window. Choose Run | Reset
to stop execution (leaving break mode and
returning to normal code-writing mode in
the Editor).

While on the subject of the Immediate Window,
it has another special use when you’re writing code
that involves loops or other repetitive behaviors:
displaying results. Throughout this book, including
here in this chapter, you’ve seen how to use the
MsgBox command to help test macro code by
showing you what’s going on. But as illustrated in
the second code example, it can be tedious to have
to repeatedly click the OK button to move the code
forward each time a message box is displayed within

New Ways to Test Macros

� Chapter 11  Exploring Loops

159

The variable X is incremented 12 times (1 To 12), and each time 2 is
added. So when this little macro runs, the message box displays 24 as the
final value in X.

Sub ExploreLoop()

For I = 1 To 12

 X = X + 2

 MsgBox X

Next I

End Sub

The Three Kinds of For...Next Loops
You can specify the precise number of loops that are to be taken before
moving past the For...Next structure (as we did in the code examples
earlier in this chapter):

For I = 1 to 20

The second type of For...Next loop employs a variable (or expression)
to specify the number of loops. Perhaps you want to allow the user to decide
how many copies of a document should be printed. You display an input box

a loop. The solution is to print repetitive results in
the Immediate Window rather than in a message box.
Try executing this macro, and view the results in the
Immediate Window:

Sub ExploreLoop()

For I = 1 To 12
 X = X + 2

 Debug.Print X
Next I
End Sub

If you wish, you can leave the Immediate Window
open all the time while testing code. The Immediate
Window behaves much like Notepad. For example,
to clear the Immediate Window, just press ctrl+a to
select all the contents, then press delete to delete.

New Ways to Test Macros (Cont.)

Excel 2007 Macros Made Easy

160

with the prompt “How Many Copies?” and after the user types in the number,
you loop the number of times the variable specifies:

Sub ExploreLoop1()

NumberOfCopies = InputBox("How many copies")

For I = 1 To NumberOfCopies

 Debug.Print I;

Next I

End Sub

Stepping Through a Loop
The third variation on the For...Next loop involves skipping steps. There
is an optional command that works with For...Next called Step. Step
can be attached at the end of the For line to force VBA to skip loop iterations,
to step past them. Step alters the way a loop counts.

As you’ve seen, a loop normally counts by one:
For I = 1 to 12

 Debug.Print I;

Next I

Results in: 1 2 3 4 5 6 7 8 9 10 11 12
However, when you use the Step command, you can specify that the loop

count every other number (by using Step 2):
For I = 1 to 12 Step 2

 Debug.Print I

Next I

Results in: 1 3 5 7 9 11
Or you could step every 15th number (Step 15):

For I = 15 to 90 Step 15

 Debug.Print I;

Next I

Results in: 15 30 45 60 75 90

Notice that if you add
a semicolon to the
end of the Debug
.Print line, the
results are printed
horizontally within the
Immediate Window
rather than using up
a separate line for
each result. Also, if
you’re mystified by
the Debug.Print
command in general,
see the briefing earlier
in this chapter.

Memo

Additional variations
using the Step com-
mand include count-
ing down backward
using a negative step
(For I = 10 To
1 Step –1), and
even counting by frac-
tions (Step .25).

Memo

� Chapter 11  Exploring Loops

161

Nesting Loops
For...Next loops can also be nested, one inside the other. At first this
sort of structure seems confusing, and it often actually is. But just do what
most programmers do when perplexed: hack. The term hacking has several
meanings in computing, but one meaning is: trying various approaches to
see which one works. With nested loops, you can try various numbers for the
counter variables, and try moving commands around in the “inner” or “outer”
loop, to eventually figure out how to get the results you’re after.

Nested loops can be confusing because you add a new dimension when
you use an interior loop. The inner loop interacts with the exterior loop in
ways that are immediately clear only to the mathematically gifted. Essentially,
the inner loop does its thing the number of times specified by its own counter
variable, multiplied by the counter variable of the outer loop.

In this situation, simply hack away until things work the way they should.
Hacking to a programmer means precisely the same thing as carving to a
sculptor—chipping away until the desired shape emerges. Notice in the
following example we use a plain Debug.Print command (with no variable) in
the outer loop. This has the effect of moving us down one line in the Immediate
Window. This makes it easier to visualize the activity of the two loops:

For I = 1 to 5

 For J = 1 to 10

 Debug.Print I;

 Next J

 Debug.Print

Next I

Results in:
 1 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 2
 3 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 4
 5 5 5 5 5 5 5 5 5 5

Excel 2007 Macros Made Easy

162

Note that you can start a loop’s counter variable anywhere; you need
not start the counter with 1. And the Step size can be whatever you wish,
including negative numbers if you want to count down instead of up.

For I = 10 To 1 Step – 2

 Debug.Print I;

Next I

Results in: 10 8 6 4 2
Any numeric expression can be used with For...Next. (See Chapter 9

for a definition of expression.) However, the range you’re counting must be
possible. The following range is not possible:

For I = –10 To –20 Step 2

 Debug.Print "loop"; I

Next

This loop does nothing when you execute it. It cannot. You’re asking it
to count downward, but your Step command is positive. As any intelligent
entity would when confronted with a senseless request, VBA does nothing
with these instructions. It ignores you. To make this loop actually loop, you
have to make the Step negative with –2:

For I = –10 To –20 Step –2

 Debug.Print "loop"; I

Next

Avoiding the Dreaded Endless Loop
Here are some additional notes about looping.
For...Next loop structures can be as large as you need them to be—

they can contain as many lines of code between the For and the Next as you
want. On the other hand, you can put a small For...Next structure all on
one line, if you wish, by separating the “lines of code” using colons:

For J = 1 To 5: Debug.Print J: Next J

Notice that you can
add words to the
Debug.Print
command. This can
be useful as a way to
identify the variable
you’re printing, like
this:
Debug.Print "i
= "; i

Memo

It’s common practice
to indent the com-
mands between
For...Next,
If...Then, and
other structures
(Do...Loop, With,
Select Case,
and so on). This
indentation makes
code easier to read
by indicating that the
indented items are
subordinate, that they
are controlled by a
surrounding structure
in some fashion.

Memo

� Chapter 11  Exploring Loops

163

And that final J is optional, but omitting it makes your program slightly
less easily understood. The following example illustrates how you can leave out
the final variable name. This practice is frowned upon by some programming
teachers (though it’s actually quite frequently found in real-life programming):

For J = 1 To 5: Debug.Print J: Next

Now we come to the famous endless loop. Also known as an infinite loop,
such a structure has no way of stopping. You have provided no exit, no
condition that will allow the loop to finish. Here’s one example:

Sub NoEndLoop()

For J = 1 To 5

 J = 3

Next J

End Sub

When you execute this, the only way to stop it is to press ctrl+break if
you’re running it in the VB Editor, or press break if it’s been launched from
within Excel as a macro.

Perhaps you see the problem here. The computer is attempting to finish an
unfinishable job. Each time through this loop you reset the counter variable
J to 3, so J never has a chance to reach 5 and thereby continues executing
code below the loop structure (in this case the End Sub).

If you use Step 0, you will also create a loop that never ends. In effect, an
endless loop causes the computer to go into a state of suspended animation.

There are some situations where you do want an endless loop, such as
those continually repeating product demonstrations you see in stores. But
these situations are rare. Endless loops are usually just a bug that you need
to fix. Endless loops are even more common in other loop structures, such as
Do...Loop, which we’ll explore next.

Excel 2007 Macros Made Easy

164

Do...Loop: Repeat Until
a Condition Is Met
An alternative to For...Next is a Do...Loop. This type of loop doesn’t
use a specified counter. It instead contains a condition that specifies when the
loop is supposed to end. Although For...Next is the more common loop
structure in programming, Do...Loop is the more flexible structure.

The reason that For...Next is used so often is that when you’re writing
your program, you often know how many times you want something done. So
you can provide the counter variable with its exit condition.

As a generalization, when you want something done repeatedly but don’t
know the number of times you want it repeated, use a Do...Loop instead of
a For...Next loop.
For...Next is good when you do know the number of times something

should be done. Do...Loop is good when you know a condition that
must be satisfied rather than the precise number of times a task should be
performed.

Here’s an illustration:

For...Next means: “Brush your hair 150 times.”
Do...Loop means: “Brush your hair until it shines.”

The flexibility of Do...Loop structures results from the variety of ways
you can set up interior tests that exit the loop. Here’s a simple example:

Do While x < 14

 x = x + 2

 Debug.Print x

Loop

Results in: 2 4 6 8 10 12 14
It’s pretty easy to read this code. It means, do this looping as long as the

value in variable x is less than 14. Once that condition is met, exit the loop
and continue on with whatever code follows the Loop.

� Chapter 11  Exploring Loops

165

The Four Flavors of Do...Loops
Do...Loops come in four flavors. The first is illustrated in the following
code example:

Do While x < 66

Loop

The second uses an Until command, like this:

Do Until x < 66

Loop

The difference between this Until version and the While version is that
Until loops only as long as the condition is false. In other words, loop until x
is less than 66. (As opposed to looping as long as the condition remains true:
loop while x is less than 66.)

Actually, these two variations are pretty much interchangeable. It’s just a
matter of how you want to express things, like the difference between “Sweep
until the porch is clean” versus “Sweep while the porch is dirty.” The computer
doesn’t care about such things. However, expressing the condition in a
particular way can sometimes make your meaning clearer to you and other
humans who read your program.

Moving the Exit Condition
to the End of the Loop Structure
The third and fourth variations of Do...Loop test the condition at the end

instead of the beginning of the loop. This ensures that the loop will always

execute at least once.
If you put the test condition at the start of the loop and the test fails, the

loop will never execute even once. VBA will skip over the commands within
the loop.

Excel 2007 Macros Made Easy

166

So, if you want a loop to always execute at least once, put the condition test
at the bottom of the loop, like this:

Do

 Y = Y + 1

 Debug.Print Y

Loop Until Y >= 0

Results in: 1
But put the test Y >= 0 back up at the top of the loop and nothing is

printed. Nothing happens because this loop won’t even execute once. Y is not
greater than or equal to zero at the start of this loop structure. So the loop
immediately exits itself without carrying out any instructions within the loop,
including the Debug.Print instruction:

Do Until Y >= 0

 Y = Y + 1

 Debug.Print Y

Loop

Results in:

While...Wend, a Less Powerful Do...Loop
Another variation on loop structures is While...Wend. This structure
merely continues looping while a condition remains true. To loop as long as X
is less than 24, you would write:

While X < 24: X = X + 1: Debug.Print X: Wend

While...Wend has no exit command. You can move past For...
Next structures or Do...Loop structures using Exit For and Exit Do
commands. But While...Wend has no such forced exit command.

Also, While...Wend is limited to testing the condition at the start of its
loop structure.

� Chapter 11  Exploring Loops

167

Managing Object Collections
with For Each...Next Loops
VBA itself manages the exit condition in a special kind of loop structure called
For Each...Next. You can use For Each...Next with an array, because
VBA knows how big the array is, so VBA knows when to exit the loop.

In other words, with the For Each...Next structure, you don’t use a
counter variable, or specify an exit condition, as you do with For...Next
and Do...Loop structures.

Here’s an example:

Sub ForEachTest()

Dim MyNames(1 To 6)

For I = 1 To 6

 MyNames(I) = "Name" & I

Next I

For Each Thing In MyNames

 Debug.Print Thing

 Next

End Sub

Results in: Name1 Name2 Name3 Name4 Name5 Name6
In this code you first declare an array called MyNames. You specify that

this array holds six items. Then you use a traditional For...Next loop to
store six strings (Name1, Name2, and so on) in this array.

But when you go to print the contents of this array, you use the For...
Each structure to iterate through the array. When VBA reaches the upper
boundary of the array (index item 6), it automatically exits the For...
Each loop. Notice that I used a variable named Thing, but you can use any
variable name you want in the For...Each loop. However, the variable
must be of the variant or object type (if you don’t specify a variable’s type, VBA
automatically makes it a variant, as in the above example).

Excel 2007 Macros Made Easy

168

For...Each is typically used with collections—a set of objects. You can
create your own collections, like this:

Sub MakeCollection()

Dim MyNames As New Collection

For I = 1 To 20

 MyNames.Add "Name" & I

Next I

For Each Thing In MyNames

 Debug.Print Thing

Next

End Sub

You can use the Add method to fill a collection with data, then use
For...Each to iterate through your collection. There are also built-in
collections, such as the Sheets collection that contains all worksheets (and
charts) in the currently active (or selected) workbook. Here’s an example that
employs the UsedRange method to display all the data in a worksheet:

Sub SeeCollection()

 Dim r As Range

 For Each r In ActiveSheet.UsedRange

 Debug.Print r.Value

 Next

End Sub

Here you create a variable of the Range type, and then use it to access
each cell in the currently active sheet’s “used range” (the cells contained
within an imaginary rectangle drawn around all cells that contain actual data).
Try this code. You’ll see how this technique can be a very quick way to search
through a worksheet (to modify cells that meet a particular criterion, or to
find, for example, any cells that contain 33):

For Each r In ActiveSheet.UsedRange

 If r = 33 Then

� Chapter 11  Exploring Loops

169

 Debug.Print r.Value

 End If

 Next

The following example illustrates how to use the address property of the
range object to identify which cells contain the value 33:

Sub SeeCollection()

 Dim r As Range

 For Each r In ActiveSheet.UsedRange

 If r = 33 Then

 Debug.Print r.Address & ": ";

 Debug.Print r.Value

 Debug.Print 'move down one line in the Immediate Window

 End If

 Next

End Sub

Excel, like the other Office applications, contains
many built-in collections you can employ in your
programming. To see the various objects and
collections that are built into Excel, follow these steps:

From the main Excel window, press 1.	 alt+f11 to
get to the VB Editor.

In the Editor, choose Help | Microsoft Visual 2.	
Basic Help | MSDN on the Web.

You’ll see a web page with a Live Search field.

Type 3.	 Excel 2007 object model map into the
search field.

A list of links appears.

In the list of links, click 4.	 Excel Object Model
Reference (or Excel 2007 object model map).

It may also be necessary to click an additional 5.	
link: Excel Object Model Map.

In any case, what you’re looking for can be found
by pasting this address into your Internet browser:

http://msdn2.microsoft.com/en-us/
library/bb332345.aspx

You’ll now be able to examine the object model,
as shown in Figure 11-1. Objects are shown in blue;
collections in yellow.

You can click any of the objects or collections
displayed in the object model map to open a Help
screen describing how to use that object or collection.
In fact, you’ll frequently find good code examples that
you can copy and paste into the VB Editor to explore,
or modify for use in your own macros.

Take a Look at Excel’s Objects and Collections

http://msdn2.microsoft.com/en-us/library/bb332345.aspx
http://msdn2.microsoft.com/en-us/library/bb332345.aspx

Excel 2007 Macros Made Easy

170

Figure 11-1  Excel has dozens of built-in collections you can manipulate, as shown in this object model map.

12
Adding Controls
to Your
Worksheets
You can execute macros in several ways:

Create a keyboard shortcut such as ππ alt+f.

Add a button to the Quick Access toolbar.ππ

Press ππ alt+f8 to bring up the Macros dialog
box.

Press ππ f5 while in the VB Editor (after clicking
within the macro to place the blinking
insertion cursor in the macro).

Put a control, such as a button, on a ππ

worksheet that the user can interact with.

It’s this last method that we’ll explore in this
chapter. You’ll see how to add controls to your
worksheets to make it easier for people to execute
your macros. Clicking a button or other control that’s
sitting right there on a worksheet has to be about the
fastest, most intuitive way to execute code.

Recall from the section “Creating Custom
Dialogs” in Chapter 7 that you can create a custom
dialog box by adding controls from the Toolbox in the
VBA Editor. Then you write some code in an event
handler such as a Click event. This approach is
quite similar to writing a macro, except event handler
code executes when the user clicks the control.

Excel 2007 Macros Made Easy

172

You can put controls on worksheets, and write code to make things happen
when the user clicks (or otherwise interacts) with the controls. Let’s see how
it’s done.

Using Buttons to Execute Code
In this example, we’ll assume that you frequently find yourself zooming in to
view selected cells, then zooming back out to normal view. So, instead of zooming
by using tabs, using the zoom slider in the bottom right of the worksheet window,
or clicking icons, try putting a couple of buttons right on your worksheet instead.
Click one to zoom in; click the other to return to normal view.

Adding Buttons to a Worksheet
To add a button to a worksheet, follow these steps:

Click the Developer tab on the Ribbon.1.	

Click the Insert icon to display the available controls, as shown in 2.	
Figures 12-1 and 12-2.

Click the ActiveX Command Button icon as shown in Figure 12-2. 3.	

Two things happen when you click the button icon: The Design Mode
icon is enabled (turns gold) and your mouse pointer changes into a
crosshairs. The Design Mode icon on the Ribbon means you can’t
interact normally with the worksheet—instead you’re able to position
and resize controls, and also, as you’ll see, write code for those
controls. To return to normal worksheet interaction at any time, just
click the Design Mode icon. It will be disabled.

With your mouse, drag somewhere on the worksheet to create a 4.	
button, as shown in Figure 12-1.

If you prefer, you can
just click to place the
button, but dragging
gives you control over
the size and shape.
You can always
reposition or reshape
a control by clicking
it to select it, then
either dragging it as a
whole to move it, or
dragging one of the
eight small “handles”
on the control’s sides
to resize it.

Memo

If you want to clone
a control—so you
can be sure that
a new control will
be the same size
and shape as the
original—just click
to select the control,
press ctrl+c to copy
it, then press ctrl+v
to make a copy, or
multiple copies.

The Easy Way

� Chapter 12  Adding Controls to Your Worksheets

173

Click the button to select it, then press 5.	 ctrl+c to copy it.

Press 6.	 ctrl+v to paste a new, clone button. Drag the clone so it’s next to
the original.

Figure 12-1  Use the Insert icon to add controls to a worksheet.

New button

Excel 2007 Macros Made Easy

174

Now you want to change the default caption (CommandButton1) 7.	
to something meaningful to the user. Right-click the first
button and choose CommandButton Object | Edit from the
context menu.

The button control is now framed with hashmarks. At this point 8.	
you can just type in the new caption.

Type 9.	 Zoom as the caption for the button
on the left, and repeat steps 7 and 8 to
change the caption on the right button
to UnZoom (see Figure 12-3).

Adjusting Control Properties
Now you may want to change the appearance or otherwise modify some of
the properties of your new button controls.

Click one of the buttons to select it alone. (If the buttons are grouped, then
ungroup them using the context menu’s Grouping option. If the buttons are
both selected, unselect them by clicking elsewhere in the worksheet. You want
only one button to be selected because that’s the only way to bring up the
Properties window.)

Right-click one of your buttons to display its context menu, then choose
Properties (or click the Properties item in the Controls section of the Ribbon).
The Properties window appears, as shown in Figure 12-4.

Double-click the Font property in the window shown in Figure 12-4 to
display the Font dialog, shown on the right. Change the Name property in the
Properties window to ZoomIt (for the button that is captioned Zoom). This
Name property will also automatically become the name of the sub (the event
handler where you write your code to make things happen when this button
is clicked).

Double-click the Font property in the window shown in Figure 12-4, to
display the font dialog, shown on the right. Change the Name property in
the Properties window to ZoomIt (for the button that is captioned Zoom).

Figure 12-2  Click on the
first ActiveX control button,
the Command Button.

Figure 12-3  When you
choose the Edit option,
you can directly type in a
button’s caption.

If you want to reposi-
tion two or more
controls as a unit,
hold down the ctrl
key as you click each
control. This creates
a group of controls
you can now drag
around the worksheet
and drop to a new
location—as a group.
In this mode, you can
also right-click one of
the grouped controls,
choose Format Con-
trol from the context
menu, and adjust
several properties
including size.

Memo

� Chapter 12  Adding Controls to Your Worksheets

175

I’m sure you couldn’t help but notice the strange
shadow set of controls—nearly duplicates of the
ActiveX set—shown in Figure 12-2. This second
set is titled form controls and we’ve been avoiding
dealing with them in this chapter. Why? Because they
are less flexible and less useful than their ActiveX
counterparts. They’re compatible with earlier versions
of Excel, but are somewhat harder to work with, have
few properties, can’t trigger events, and generally
allow you less freedom. So, my suggestion is that you
avoid them in favor of the ActiveX set of controls.

However, there are a few situations where you
might want to use a form control. ActiveX controls

require that you create an event handler (such as
Button_Click), but the older form controls can
directly trigger macros. This isn’t much of a difference
really (you can just copy code from an existing macro
and paste it into an event handler). But if you want
to do something really simple and quick, like add a
button that just executes an existing macro, go ahead
and use a form control button if you wish.

You can’t select form controls by clicking the Design
Mode button. It has no effect on them. Instead,
right-click it to select it. And you assign a macro to it
by right-clicking, then choosing Assign Macro from
the context menu. A list of your macros appears.

Understanding the Two Sets of Controls

Figure 12-4  You can change many of the qualities of a control
in its Properties window.

Excel 2007 Macros Made Easy

176

This Name property will also automatically become the name of the sub
(the event handler where you write your code to make things happen when this
button is clicked). Also change the font size to something that looks good to you.

Now click the other button to select it. Notice how the Properties window
changes to display the properties of this newly selected control. Repeat the
above steps to change the Name property of the second button to UnZoomIt,
and the font size to match the other button.

If you wish, muck about with the colors and so on. Such things are a
matter of personal taste, or the lack thereof. You can even add a picture using
the Picture property, which can be kind of cool.

Now close the Properties window. You’re ready to add the code.

Writing Code for Buttons and Other Controls
OK. You’ve got some pretty buttons up there on the worksheet, but what’s
beauty without the ability to do some job? Well, in some cases, beauty is its
own justification. But we want these buttons to do some work.

Double-click the button captioned Zoom. The VB Editor opens up,
displaying the Click event handler for the button named ZoomIt. (If the
Editor doesn’t open, you’ve deselected the Design Mode icon in the Ribbon’s
Developer tab. Select it and try again.)

The ZoomIt_Click that you see in Figure 12-5 handles the Click
event (responds when the user clicks) for this button named ZoomIt. In
other words, it’s just like a macro, but instead of executing via a shortcut key
combination or some other trigger, this code executes when the user clicks
this particular button.

Also notice in Figure 12-5 that this Button_Click event handler is
stored within (and thus is available to) this particular worksheet only. This
restricted, local availability makes sense because this button is located only
on this worksheet. The code is not in the Personal project (that would make it
available to all current and future worksheets).

We want to make the Zoom button blow up any selected area on the
worksheet. If nothing is selected, the whole thing blows up.

As you learned earlier
in this book, to find
out what code you
need to insert in this
event handler, you can
just record a macro
performing the actions
you want the event
handler to carry out.

Memo

� Chapter 12  Adding Controls to Your Worksheets

177

Type the following line into the Click event:

Private Sub ZoomIt_Click()

 ActiveWindow.Zoom = True

End Sub

Now go back to the worksheet, click the Developer tab, and deselect the
Design Mode icon. This way you can test your new button. Click the Zoom
button. Try it with some cells selected. To return to normal view, click the
100% icon in the Ribbon’s View tab.

Figure 12-5  You use the VB
Editor to write code for event
handlers like this button’s
Click event.

A click is an event—
but most controls
have additional
events. You can see
a list of these events
by dropping down the
list box in the upper-
right side of the VB
Editor when you’re
writing code for an
event handler.

Memo

Excel 2007 Macros Made Easy

178

To program your UnZoom button, select the Design Mode icon, then
double-click the UnZoom button to open its Click event handler. Type the
following line into the UnZoomIt_Click() event:

Private Sub UnZoomIt_Click()

 ActiveWindow.Zoom = 100

End Sub

Now you can both zoom, and restore normal view, via your two buttons.

Exploring Other Controls
You’ll find various other controls available when you click the Insert icon in
the Ribbon’s Developer tab. Let’s look at several of these controls and see what
they do and when they’re appropriate.

Toggle button controls are useful for situations similar to light-switch
behavior: two states, the lights are on or off. That’s similar to what you’ve been
doing with the zoom feature you added to your worksheet in this chapter. It
might be more efficient to replace the two zooming buttons with just a toggle
button. When clicked, it zooms. When clicked a second time, it unzooms.

Adding a Toggle Button
Let’s give it a try. Click the Design Mode icon to enable that mode. Click your
custom Zoom button to select it, then press delete to get rid of the button.
Likewise, select and delete your UnZoom button. Deleting these controls
doesn’t destroy the event handler code in the VB Editor, which we’ll reuse for
our new toggle button.

Now add an ActiveX toggle button by clicking the Insert icon next to the
Design Mode icon, then selecting the toggle button and either dragging it or
just clicking to place it on a worksheet.

Event handlers
like these two
Button_Click
events are destroyed,
lost forever, if you
delete the worksheet
within which they’re
created or contained.
So if you have some
code that you want to
preserve, copy it, and
then paste it into a
Notepad file or some
other safe storage
area for possible
future use.

Memo

� Chapter 12  Adding Controls to Your Worksheets

179

Double-click the new toggle button to open the VB Editor, and then type
this into the toggle button’s Click event:

Private Sub ToggleButton1_Click()

Static Clicked As Boolean

Clicked = Not Clicked

If Clicked Then

 ActiveWindow.Zoom = True

Else

 ActiveWindow.Zoom = 100

End If

End Sub

This code deserves some explanation. The Static command is quite
useful in situations like this, so you should have it in your programmer’s bag
of tricks. Static preserves variables. When a variable is declared Static (as
opposed to using the Dim command described in the briefing in Chapter 9),
that variable and the value it holds are retained. An ordinary, nonstatic variable
is destroyed along with its contents whenever a macro or event handler
finishes execution. But we want to preserve the value in our variable named
Clicked because that tells us the current status of the toggle button.

Here’s what happens, step by step, in this code.

We declare a static (nonvolatile) variable named 1.	 Clicked. And we
specify that it’s a Boolean variable type.

By writing 2.	 Clicked = Not Clicked, we switch the value in
Clicked to its opposite. In other words, if Clicked contained
False, it now contains True. A Boolean variable can contain only
two possible values, True or False. This makes it ideal for a toggle
situation. Every time the line of code Clicked = Not Clicked
executes, it changes from False to True, or True to False. In
other words, this Boolean variable behaves just like a light switch, or

Excel 2007 Macros Made Easy

180

for that matter, like a toggle button control. What’s more, this variable
is Static, so it remembers its contents even when the event handler
code is finished executing.

The rest of the code is easily understood, once you see how a static 3.	
Boolean variable switches between two states when you use the Not
command. If Clicked means “if the variable named Clicked is
holding the value of True.” So, if it is holding the value of True, the
user has clicked that button (the button looks as if it’s been sunk into
the worksheet, indicating that it’s “on” or “active”). We therefore want
to zoom in response to this click:

 ActiveWindow.Zoom = True

But, if this is the user’s second time clicking this button, they’re
turning the zoom off. So the Else section of the If...Then
structure is triggered, and this code executes to restore normal view:

 ActiveWindow.Zoom = 100

Using a Spin Button
The spin button control has an up arrow and a down arrow. It’s two buttons
in one. Typically, spin buttons are used to increase or decrease something.
We’ll use it to increase or decrease the zoom level each time the user clicks it.
Click the up arrow and zoom increases. The down arrow, and it decreases.

Let’s see how we can use a spin button to let the user adjust the zoom
percent. Add a spin button to your spreadsheet, and also add a label control.

You might think we’ll have to use a Static variable in this code to
remember the current zoom value, but you’d be wrong. You can access many
controls’ properties during VBA code execution. And this spin button control
has a value property that goes up by 1 each time the up arrow is clicked, and
down by 1 each time the down arrow is clicked. And this value is retained
until you close the worksheet on which it resides.

The value property of the spin button starts at zero. But we know that
the minimum zoom factor for a worksheet is 100 (meaning 100 percent).

� Chapter 12  Adding Controls to Your Worksheets

181

And the maximum zoom is 400. So we don’t want to allow the user to click
outside these values. We’re going to use the value property and multiply it
by 100 to set the zoom. So we’ll want a value of 1, 2, 3, or 4. We don’t want to
allow the user to go below 1 or above 4 in their clicking (that would cause an
error and would halt the code execution).

You could write code that checked these boundaries (> 0 and < 5) and
enforced them in your event handler. But that’s cumbersome and, in this
case, checking for what programmers call boundary conditions simply isn’t
necessary. Luckily for us, the spin button control has a pair of built-in
properties that will limit its range. So, right-click the spin button control and
choose Properties from the context menu to open its Properties window. Set
the Min property to 1 and the Max property to 4.

Right-click the label and choose Properties from the context menu (if the
Properties window is still visible, you can just click the label control to select
it and the Properties window will automatically switch to display the label’s
properties). Change the label’s caption property to: Click to zoom.

Now double-click the spin button to open its code window.

Private Sub SpinButton1_Change()

v = SpinButton1.Value

ActiveWindow.Zoom = 100 * v

End Sub

In this code, you access a property of the spin button three times. First
you read (obtain) the value currently in the value property of SpinButton1.
Notice how you must specify the control’s name, separated by a period (.)
from the property whose data you want to see.

So, after the first line of code executes, the variable v contains whatever
is in the value property of this particular spin button. Remember that the
button’s Max and Min properties prevent the values from going below 1 or
above 4. Then all you have to do is set the zoom property to 100 times the
spin button’s current value. This results in four possible zoom values: 100,
200, 300, and 400.

This page intentionally left blank

Note: Page numbers referencing figures are italicized and followed by an “f .”

Index

2008 U.S. Corporate
Income Tax Rates, 97f,
153–154

A

absolute references, 8
Activate events, 115
ActiveCell command, 25
ActiveCell.CurrentRegion

.Select command, 131
ActiveX CommandButton

icon, 172, 174f
ActiveX controls, 174f, 175
ActiveX toggle buttons, 178
Add method, 168
Alphabetic tab, 22
apostrophes, 24–25, 46–47
argument lists, 84
arguments, 24, 104–105
arithmetic operators, 139
arrays

numbers versus
names, 143–145

overview, 142–143
rules, 145–146

Auto Quick Info feature,
105f, 106

B

Bonus function, 101–102
Boolean variables, 179–180
boundary conditions, 181
break mode, 89, 158
built-in constants, 111
Button_Click event

handler, 176, 178
buttons

adding worksheets to,
172–174

toolbar, 67, 69
writing code for,

176–178
Buttons argument, 109–110

C

Cancel buttons, 113–114
capitalization, 135
case sensitivity, 135
Categorized tab, 22

cells, formatting. See
formatting, cells

Cells command, 131
center alignment,

31–34, 123
Choose Commands From

drop-down menu, 68–69
Click event handler,

176–177
code

for cell formatting,
32–33

copying and
pasting, 48

examples of, 76
familiarization

with, 31
harvesting

constructing
macros, 45–50

modules, 45
overview, 44–45
removing old

macros, 50–51
testing

macros, 50

Excel 2007 Macros Made Easy

184

code (cont.)
paring, 78–80
viewing, 38–40
writing

for buttons and
controls,
176–178

for input boxes,
106–108

for macros, 78
Code group, 20
Code window, 22–23,

75, 107
collections, 168–169
colons, 92
color palette, 129
Column Width dialog

box, 43
columns, 42–43, 49, 127
Comma style, 125
CommandButton control,

113–114
commands

date and time, 83–84
error, 87–88
financial calculation,

85–87
finding arguments

for, 106
math, 84–85
by name

ActiveCell, 25
ActiveCell
.CurrentRegion

.Select, 131
Cells, 131
CurrentRegion,

132

DateDiff, 84
Debug.Print,

160–162
Dim, 108, 136,

145–146, 179
Dimension, 129
End Sub, 26, 46
Exit Sub, 87
Format, 83, 87
FormulaR1C1, 25
GoSub, 92
If...Then, 107
InputBox,

104–106, 154
InStr, 82
LCase, 83
Left, 83
Mid, 82
MsgBox,

84, 109
Offset, 27
Paste Special, 39
Range, 26,

131–132
Replace, 83
Round, 84–85
Select, 26–27
Selection, 132
Static, 179–180
Step, 160, 162
Until, 165
View Macros, 68
While, 165
With...End With,

47–49
With Selection,

78, 123–124

text manipulation,
81–83

understandability
of, 80

VB Editor, 88–89
writing

overview, 74–80
paring code,

78–80
understanding

code, 78
commas, 104
comment lines, 46–47
comparison operators,

138–139
conditional expressions,

148–149
constants, built-in, 111
controls

adjusting properties,
174–176

writing code for,
176–178

copying
code, 130
controls, 172
macros, 46, 58–59

corporate income tax
calculations, 97–101,
153–155

CorpTax function,
98–101

counting down
backward, 160

current workbook, 15–16,
56–57

CurrentRegion
command, 132

185

� Index

customization
date, 120–121
dialog

adding items
to List Box,
114–116

offering list
of options,
112–114

responding to
user selection,
116–117

function
hiding sensitive

data, 101–102
simplifying

complicated
calculations,
97–101

toolbar, 66–70, 71f
Customize Quick Access

Toolbar drop-down list,
69–70

D

data processors, 157
date and time commands,

83–84
date macros, 10–12
date options, 120–121
DateDiff command, 84
datum, variable, 134–135
Debug menu, 89
Debug.Print command,

160–162
Default argument,

104–105

default dates, 120
Delete button, 51
Description field, 5
Design Mode icon, 172
Developer Ribbon, 20
Dim command, 108, 136,

145–146, 179
Dimension command, 129
dimensions, array, 145
Do...Loop

moving exit condition
to end of, 165–166

overview, 164–165
While...Wend

structure, 166

E

Edit menu, 88
Edit option, 174
editing macros

saving edited
macros, 29

in VB Editor
Code window,

22–23
modules, 21
Project Explorer,

20–21
Properties

window, 21–22
Else operation, 148, 151
ElseIf operation, 152–153
enabling macros, 58–59
End Sub command,

26, 46
endless loops, 162–163
error handlers, 87–88

error messages, 135
event handlers, 115,

176–177
Excel Developer Reference

material, 31
Excel keyboard shortcuts,

63–65
Excel Options window,

3–4, 67–69
Exit Sub command, 87
expressions, 137–138, 161

F

file extensions, 56
File menu, 88
files, macro-enabled, 56
financial calculations

commands, 85–87
font selection, 124, 127
For Each...Next loops,

167–170
form controls, 175
formal variable

declaration, 136
Format command, 83, 87
Format menu, 89
formatting

cells
changing

existing
formats,
120–121

color scheme,
128–129

column
headings,
122–124

Excel 2007 Macros Made Easy

186

formatting (cont.)
formatting

macros,
129–131

number
appearance,
125–126

overview, 12–14,
126–128

VBA commands,
131–132

macros, 55–56, 96–97,
129–131

Formula bar, 36–37
FormulaR1C1

command, 25
formulas, displaying as

values
overview, 36–40
testing macros, 38
viewing macro code,

38–40
For...Next loops

endless, 162–163
nesting, 161–162
Step command, 160

fractions, 160
function arguments, 102f
Function Arguments

window, 100
functions, customized

hiding sensitive data,
101–102

simplifying
complicated
calculations,
97–101

G

GoSub command, 92
gridlines, 41, 127
grouped buttons, 174

H

hacking, 161
hard-coding, 105
hard-wiring, 105
harvesting code

constructing new
macros, 45–50

modules, 45
overview, 44–51
removing old macros,

50–51
testing macros, 50

Help field, 30
Help system, 29–34, 76, 81
hidden workbooks, 51–52
horizontal alignment,

31–32

I

I variable, 158
If...Then command, 107
If/Then/Else macros

calling subroutines,
93–94

Else operation, 151
ElseIf operation,

152–153
If/Then macros

nested, 155–156
simple, 149–150

multilevel, 153–155
overview, 147–148

Immediate Window,
158–159

implicit declaration, 136
Income Tax Rates, 2008

U.S. Corporate, 97f,
153–154

increments, 158
index numbers,

144–145
infinite loops, 163
input boxes

writing and testing
code for, 106–108

writing complete
macros, 106

InputBox command,
93–95, 104–108, 154

Insert Function dialog
box, 99–100

Insert icon, 172, 173f
InStr command, 82
integer division, 84
interactive macros

arguments, 104–105
custom dialogs

adding items
to List Box,
114–116

offering user list
of options,
112–114

responding to
user’s
selection,
116–117

187

� Index

input boxes
writing and

testing code
for, 106–108

writing complete
macros, 106

message boxes,
109–111

interest rate calculations,
85–87

iteration, 158

K

keyboard shortcuts, 61–65

L

labels, 92–93
Landscape option, 42, 48
LCase command, 83
Left command, 83
ListItem property, 116
literals, 137
Lock Project for Viewing

checkbox, 60
logical operators, 140
loop counter variables, 158
loops

Do...Loop
moving exit

condition
to end of,
165–166

overview,
164–165

While...Wend
structure, 166

For Each...Next,
167–170

For...Next
endless, 162–163
nesting, 161–162
Step command,

160
overview, 157–158
testing macros,

158–159

M

Macro button, 6, 43
macro code. See code
macro commands. See

commands
Macro Name field, 5, 51
Macro Options dialog box,

61–62
Macro Recorder, 14,

43, 121
macro-enabled files, 56
macro-enabled workbooks,

15, 17
math operations, 84–85
message boxes, 109–111,

155–156
Mid command, 82
Mod operator, 139
Modify Button window, 69
modules, 21, 45
monthly reports, 12–13
MsgBox command,

84, 109
multilevel If/Then/Else

macros, 153–155

N

NAME1 macro
command lines, 25–26
comment lines, 25
overview, 24–26
testing, 6–7

NAME2 macro, 8, 26–27
NAME3 macro, 9–10,

27–28
names

of functions, 98
of macros, 28
of modules, 57–58
versus numbers,

143–145
of subroutines,

92–93
of variables, 135

nested If/Then macros,
155–156

nesting loops, 161–162
numbers

of items, 117
versus names,

143–145
numeric expressions, 161

O

Object Browser, 28–29
object model map, 169, 170f
objects, 28, 31, 169
Offset command, 27
offsets, 150
OK buttons, 113–114
operator precedence,

141–142

Excel 2007 Macros Made Easy

188

operators
arithmetic, 139
comparison, 139
logical, 140
overview, 138
string, 140

optional arguments, 105
orientation, page, 42, 48

P

Page Layout ribbon, 41
page orientation, 42, 48
parentheses, 24, 98–99,

104, 141–142
paring code, 78–80
passwords, 60
Paste Special command, 39
Personal Macro Workbook

deleting macros from,
51–52

saving macros to, 15,
55, 75

Print Gridlines feature,
41–42

Project Explorer, 20–21
Project Explorer window,

44, 74, 115
Project Properties

window, 60
Prompt argument,

104–105
Properties window

adjusting control
properties, 174–176

changing module
names in, 108

opening, 57
overview, 21–22, 75

protecting macros, 59–60
Protection tab, 60

Q

Quick Access toolbar,
66–70

Quick Info option, 28

R

Range command, 26,
131–132

reading macros
NAME1

command lines,
25–26

comment
lines, 25

overview, 24–26
NAME2, 26–27
NAME3, 27–28

Record Macro dialog box
overview, 5
recording date

macros in, 11
Shortcut Key field,

61–62
Store Macro In list

box, 75
recording macros

Developer ribbon, 2–4

formatting with
macros, 12–14

overview, 40–43
reading macros

NAME1, 4–7
NAME2, 7–8
NAME3, 8–10

saving macros
to current

workbook,
15–16

to new
workbook,
16–17

to Personal
Macro
Workbook, 15,
55, 75

simple date macros,
10–12

references, 8, 149
Relative References

feature, 8, 149
renaming modules,

57–58
Replace command, 83
returned values, 110f
Round command,

84–85
Run menu, 89

S

Save As window, 15–16
saving

changes, 34, 52

189

� Index

macros
to current

workbook,
15–16

editing, 29
to new workbook,

16–17
to Personal

Macro
Workbook, 15,
55, 75

workbooks, 55
Select Case statement, 98
Select command, 26–27
Selection commands, 132
selection process, 122
semicolons, 160
Sheet Options area, 41
Sheets collection, 168
Shortcut Key field, 5, 61
shortcut keys, 60–65
spin button, 180–181
Static command, 179–180
static dates, 11
Step command, 160, 162
storage

assigning macros to
toolbar, 66–71

assigning shortcut
keys to macros,
60–65

in current workbook,
56–57

making macros
available, 58–59

in Personal Macro
Workbook, 55

protecting macros,
59–60

VBA modules, 57
in workbooks,

55–56
Store Macro In field, 5
string operator, 140
Sub lines, 24, 44–45
subroutines

calling, 93–94
naming, 92–93
running macros as,

95–97
writing, 94–95

Syntax Error message,
135

T

text centering, 32
text manipulation

commands, 81–83
text operators, 138
Title argument,

104–105
TODAY formula,

10–12
toggle buttons, 178–180
Toggle Folders

button, 21
toolbars

Developer Ribbon,
2–4, 20

Quick Access,
66–71

View, 2
Visual Basic, 30f

Toolbox, 113
Trust Center window, 58

U

Until command, 165
UsedRange method, 168
UserForms

adding to List Box,
114–116

offering lists of
options, 112–114

responding to user
selection, 116–117

V

value property, 180
values, displaying

formulas as
overview, 36–40
testing macros, 38
viewing macro code,

38–40
variables

arrays
numbers

versus names,
143–145

overview,
142–143

rules, 145–146
combining into

expressions,
137–138

creating, 136–137
naming, 135

Excel 2007 Macros Made Easy

190

variables (cont.)
operators

arithmetic
operators, 139

comparison
operators, 139

logical
operators, 140

precedence of,
141–142

string
operator, 140

overview, 106–107,
134–137

variants, 136
VB Editor. See Visual

Basic Editor
VBA commands, 131–132
vertical lables, 76–78
View Code button, 21, 115
View Macros command, 68
View menu, 88
View Object button, 21, 115
View toolbar, 2
viewing macro code, 38–40
Visual Basic

customized functions
hiding sensitive

data, 101–102
simplifying

complicated
calculations,
97–101

displaying formulas
as values

overview, 36–38
testing

macros, 38

viewing macro
code, 38–40

harvesting macro
code

arrange module
windows, 45

constructing
macros, 45–50

opening new
modules, 45

overview,
44–51

removing old
macros, 50–51

testing
macros, 50

macro commands, 80
recording macros,

40–43
subroutines

calling, 93–94
naming, 92–93
running macros

as, 95–97
writing, 94–95

Visual Basic (VB) Editor
Code window,

22–23
modules, 21, 57
overview, 88–89
Project Explorer,

20–21
Properties window,

21–22, 174–176,
181

Toolbox, 113
windows in,

74–75

W

While command, 165
While...Wend

structure, 166
With Selection command,

78, 123–124
With structures, 78
With...End With

command, 47–49
workbooks

closing, 43–44
saving, 55–56
saving to new,

16–17
worksheets

adding buttons to,
172–174

adding toggle buttons
to, 178–180

adjusting control
properties, 174–176

changing appearance
of

color scheme,
128–129

column
headings,
122–124

number
appearance,
125–126

overview,
126–128

monthly report,
12–13

overview, 171–172
spin button, 180–181

191

� Index

writing
code

for buttons
and controls,
176–178

for input boxes,
106–108

for macros, 78
commands

overview, 74–80
paring code,

78–80

understanding
code, 78

subroutines, 94–95

X

XLSM file extensions, 56

Z

zoom buttons
adding to worksheets,

172–174

toggle button
controls, 178–180

writing code for,
176–178

ZoomIt_Click event
handler, 176

	Chapter 1 Recording Macros:
	Chapter 2 Editing Macros:
	Chapter 3 Creating Macros in Visual Basic:
	Chapter 4 Storing Macros:
	Chapter 5 Understanding Macro Commands:
	Chapter 6 Using Visual Basic Subroutines and Creating Functions:
	Chapter 7 Creating Interactive Macros:
	Chapter 8 Using Macros to Format Cells:
	Chapter 9 Using Variables in Macros:
	Chapter 10 Creating If/Then/Else Routines:
	Chapter 11 Exploring Loops:
	Chapter 12 Adding Controls to Your Worksheets:
	Index:

